### тИ КщМЕ ОИ ВЯчСТЕР -сЩМТАНГ ЙЯИТИЙчР

дЕМ ЕМТОПъСАЛЕ ЙЯИТИЙщР СТИР СУМчХЕИР ТОПОХЕСъЕР.

### пЕЯИЕВЭЛЕМА

 еМЭТГТА 1 4 еМЭТГТА 2 6 еМЭТГТА 3 15 еМЭТГТА 4 16 еМЭТГТА 5 17 еМЭТГТА 6 19 еМЭТГТА 7 23 еМЭТГТА 8 25
 еМЭТГТА 15 40 еМЭТГТА 16 42 еМЭТГТА 17 44 еМЭТГТА 18 48 еМЭТГТА 19 51 еМЭТГТА 20 62 еМЭТГТА 21 95 еМЭТГТА 22 99

 еМЭТГТА 9 27 еМЭТГТА 10 29 еМЭТГТА 11 30 еМЭТГТА 12 31 еМЭТГТА 13 37 еМЭТГТА 14 38
 еМЭТГТА 23 159 еМЭТГТА 24 166 еМЭТГТА 25 182 еМЭТГТА 26 186 еМЭТГТА 27 200 еМЭТГТА 28 208

### дГЛОЖИКч АПОСПэСЛАТА

сЕКъДА 173 - Two triangles having an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles.
сЕКъДА 4 - The sum of any two face angles of a trihedral angle is greater than the third face angle.
сЕКъДА 190 - In any triangle, the square of the side opposite an acute angle is equal to the sum of the squares of the other two sides, minus twice the product of one of these sides and the projection of the other side upon it.
сЕКъДА 125 - The bisector of an angle of a triangle divides the opposite side into segments which are proportional to the adjacent sides.
сЕКъДА 115 - IF a side of any triangle be produced, the exterior angle is equal to the two interior and opposite angles ; and the three interior angles of every triangle are equal to two right angles.
сЕКъДА 171 - The area of a circle is equal to one-half the product of its circumference and radius.
сЕКъДА 35 - If two sides of a triangle are unequal, the angles opposite are unequal, and the greater angle is opposite the greater side.
сЕКъДА 37 - In two polar triangles each angle of the one is the supplement of the opposite side in the other. Let ABC, A'B'C
сЕКъДА 125 - After remarking that the mathematician positively knows that the sum of the three angles of a triangle is equal to two right angles...
сЕКъДА 186 - It follows that the ratio of the circumference of a circle to its diameter is the same for all circles.