Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

SIMPLE NUMBERS.

Review page 11.

1. Name five odd numbers; five even numbers.

2. Name three exact divisors of 36; of 48; of 75.

Review page 21.

3. Name five integral numbers; five fractional numbers; five mixed numbers.

4. £-§- and .7 are numbers. 4£ and 7.2 are .

Review page 81.

5. Name five prime numbers; five composite numbers.

6. Which of the following are prime and which are composite? 2, 22, 5, 37, 45, 49, 53, 72, 87.

Review page 41.

7. What are the prime factors of 36? Of 35? Of 34? Of 33?

8. Of what number are 2, 2, 3, and 5 the prime factors?

Review page 51.

9. Name three common multiples of 4 and 6.

10. What is the least common multiple of 4 and 6?

Review page 61. (a) Multiply 746 by 20. (b) Multiply 394 by 80. (c) Multiply 547 by 300. (d) Multiply 834 by 700.

Review page 71. (e) Divide 891 by 30. (f) Divide 1265 by 50.

(g) Divide 728 by 40. (h) Divide 2478 by 70.

Review page 81. (i) A farmer bought 30 sheep; for 5 of them he paid $6 per head; for 10 he paid $5 per head; for the remainder hu paid $70. How much did the 30 sheep cost him? (j) What was the average price per head?

COMMON FRACTIONS.

Review page 12.

1. Name three fractions that have a common denominator; three that do not have a common denominator.

2. Change the following to equivalent fractions having a common denominator: | and £.

Review page 32.

3. Tell the terms of each of the following: ^, -$•, -j^.

4. Reduce each of the following to its lowest terms: ^|.

18 15 45 2 7 /o\ 240 /},\ 5 75

T¥> 5T> "8T> 7S- W "3"8TT- W ^S-

5. Reduce each of the following to a whole or mixed number: J*> ¥> ¥» fi II- (c) *H. (<*) ***

Review page 42.

6. Reduce each of the following to an improper fraction:

[table]

Review pages 62 and 72. (u) Find the product of 794| multiphed by 6£.* (v) Find the quotient of 835^ bu. divided by 2\ bu.* (w)Find the quotient of 654\s bu. divided by 9.*

* Solve, and tell a suggested number story.

DECIMAL FRACTIONS.

[ocr errors]

Review pages 13, 23, 33, 43, 53, 63, 73, and 133. Observe again the fact that when a problem in multiplication of decimals has been solved ac4.480 curately, the number of decimal places in the 19.20 product is equal to the number of decimal places

23 680 >n *,ne multiplicand and multiplier counted together. This fact should be used as a test of v73.42 the accuracy of the work rather than as a rule

3.56 for "pointing off." . ,.,„ Observe that when the decimal point in the

„„'_-.„ first partial product has been located, the re

oon Ofi maihder of the "pointing off" may be done

! mechanically by placing the point in each of the

261.3752 other partial products and in the complete product, directly under the one in the first par.005)38.455-* Llproduct.

7691. Review pages 83, 93, and 103.

.05)38.47*5+ All abstract work in division of decimals may

_„„ - be regarded as belonging to Case I.; that is, the

[ocr errors]

pupil may consider that he is to find how many

times the divisor is contained in the dividend.

Before beginning to divide, place a separa

Vo.yo frjx (v) in the dividend immediately after that

figure in the dividend that is of the same denom

5)oo. 475g {nation as the right hand figure of the divisor.

7 695 When in the process of division this separatrix

is reached, the decimal point must be written in

5)78 0v|| the Quotient.

i g g * Find how many times 5 thousandths are contained in

38455 thousandths.

fFind how many times 5 hundredths are contained in .05)78.00 T| 3847 hundredths.

Kan J Find how many times 5 tenths are contained in 384

1560. tenths .

g Find how many times 5 units are contained in 38 units. [ Find how many times 5 tenths are contained in 780 tenths. U Find how many times 5 hundredths are contained in 7800 hundredths.

DENOMINATE NUMBERS.
Review page 14.

1. One half a ton is lb. 1 tenth of a ton = lb.

1 hundredth of a ton = lb. 1 thousandth of a ton =

— lb.

Review page 24.

2. A bushel of wheat weighs pounds.

(a) 72 bu. of wheat weigh how much more than 2 tons 1

Review page 34.

(b) Change 3.26 tons to pounds.

(c) 4.7 tons are how many pounds?

(d) Change 3264 lb. to tons. <e) 5624 lb. to tons.

Review page 44.

(f) Find the cost of 7360 lb. coal at $7.25 per ton.

(g) Find the cost of 5360 lb. hay at $9.50 per ton.

Review page 54.

(h) Change 28 rods to feet. (i) 7 miles to rods,
(j) Change 506 yd. to rods, (k) 2880 rods to miles.
Review page 64.

(1) The gross weight of a load of bran was 2850 lb.; tare 1275 lb. Find the cost at $8 per ton?

(m)The gross weight of a load of oats was 2970 lb.; tare 1050 lb. How many bushels? (n) Find the cost at 25^ a bushel.

Review page 74.

(o) A mountain is 11000 ft. high. How many feet more than 2 miles high is it?

(p) A mountain is 5 mi. high. How many feet high is it?

MEASUREMENTS.
Review pages 15 and 25.

1. Which is the larger, a five foot square or an oblong 4 feet by 6 feet?

(a) Which is the larger, a 25 ft. square or an oblong 26 ft. by 24 ft?

(b) Find the area of a 15 ft. square.

(c) Find the solid content of a 15 ft. cube.

Review page 35.

2. Every rectangular figure has sides and right

angles. If the sides are equal, the figure is a . If two

of the sides are longer than the other two, the figure is an .

3. Draw a 4-sided figure that is neither a square nor an oblong. Is the figure you have drawn rectangular?

4. All the angles of a square are angles.

5. All the angles of an oblong are . angles.

6. Angles that are not right angles are either angles

or angles.

Review page 45.

7. Every rectangular solid has . faces. These faces

may be either squares or . If they are all squares the

solid is a .

8. Cut from a potato or a turnip a solid with six faces. some of which are not rectangular. Observe the acute angles and the obtuse angles.

Review pages 55, 65, 75, and 85.

(d) In 2^ cords there are how many cubic feet?

(e) In 2 ^ acres there are how many square rods?

« ΠροηγούμενηΣυνέχεια »