### Фй лЭне пй чсЮуфет -Уэнфбоз ксйфйкЮт

Ден енфпрЯубме ксйфйкЭт уфйт ухнЮиейт фпрпиеуЯет.

### ДзмпцйлЮ брпурЬумбфб

УелЯдб 186 - The 3d power of (2 a — rf)4 is (2a — rf)^«+« = (2a — d)4x3=(2a — d)". That is, any quantity, which is already a power of a compound quantity, may be raised to any power by multiplying its exponent by the exponent of the power to which it is to be raised. 7. Express the 2d power of (3 b — c)4. 8. Express the 3d power of (a — c -J- 2 d)*. 9. Express the 7th power of (2 a* — 4 c3)3.
УелЯдб 2 - DISTRICT OF MASSACHUSETTS, TO WIT: District Clerk's Office. BE IT REMEMBERED, that on the...
УелЯдб 101 - Divide the first term of the dividend by the first term of the divisor, and write the result as the first term of the quotient. Multiply the whole divisor by the first term of the quotient, and subtract the product from the dividend.
УелЯдб 92 - It will be seen by the above section that if both the numerator and denominator be multiplied by the same number, the value of the fraction will not be altered...
УелЯдб 2 - District Clerk's Office. BE IT REMEMBERED, That on the seventh day of May, AD 1828, in the fifty-second year of the Independence of the UNITED STATES OF AMERICA, SG Goodrich, of the said District, has deposited in this office the...
УелЯдб 21 - A cask, which held 146 gallons, was filled with a mixture of brandy, wine, and water. In it there were 15 gallons of wine more than there were of brandy, and as much water as both wine and brandy. What quantity was there of each...
УелЯдб 232 - I, n, d, and. S; any three of which being given, the other two may be found, by combining the two equations. I shall leave the learner to trace these ' himself as occasion may require. Examples in Progression by Difference.
УелЯдб 35 - How many days did he work, and how many days was he idle ? Let x = the number of days he worked.
УелЯдб 229 - Hence, any term may be found by adding the product of the common difference by the number of terms less one, to the first term.
УелЯдб 273 - A gentleman bought a rectangular lot of valuable land, giving 10 dollars for every foot in the perimeter. If the same quantity had been in a square, and he had bought it in the same way, it would have cost him \$33 less ; and if he had bought a square piece of the same perimeter he would have had 12^ rods more.