Elements of Geometry: Containing the Principal Propositions in the First Six, and the Eleventh and Twelfth Books of Euclid

Εξώφυλλο
J. Johnson, 1789 - 272 σελίδες

Αναζήτηση στο βιβλίο

Τι λένε οι χρήστες - Σύνταξη κριτικής

Δεν εντοπίσαμε κριτικές στις συνήθεις τοποθεσίες.

Επιλεγμένες σελίδες

Άλλες εκδόσεις - Προβολή όλων

Συχνά εμφανιζόμενοι όροι και φράσεις

Δημοφιλή αποσπάσματα

Σελίδα 164 - If two triangles have one angle of the one equal to one angle of the other and the sides about these equal angles proportional, the triangles are similar.
Σελίδα 71 - A diameter of a circle is a straight line drawn through the centre, and terminated both ways by the circumference.
Σελίδα 213 - Lemma, if from the greater of two unequal magnitudes there be taken more than its half, and from the remainder more than its half, and so on, there shall at length remain a magnitude less than the least of the proposed magnitudes.
Σελίδα 115 - In a given circle to inscribe a triangle equiangular to a given triangle. Let ABC be the given circle, and DEF the given triangle ; it is required to inscribe in the circle ABC a triangle equiangular to the triangle DEF. Draw the straight line GAH touching the circle in the point A (III. 17), and at the point A, in the straight line AH, make the angle HAG equal to the angle DEF (I.
Σελίδα 16 - To draw a straight line perpendicular to a given straight line of an unlimited length, from a given point without it. LET ab be the given straight line, which may be produced to any length both ways, and let c be a point without it. It is required to draw a straight line perpendicular to ab from the point c.
Σελίδα 247 - A plane rectilineal angle is the inclination of two straight lines to one another, which meet together, but are not in the same straight line.
Σελίδα 100 - To bisect a given arc, that is, to divide it into two equal parts. Let ADB be the given arc : it is required to bisect it.
Σελίδα 3 - AXIOM is a self-evident truth ; such as, — 1. Things which are equal to the same thing, are equal to each other. 2. If equals be added to equals, the sums will be equal. 3. If equals be taken from equals, the remainders will be equal. 4. If equals be added to unequals, the sums will be unequal.
Σελίδα 143 - F is greater than E; and if equal, equal; and if less, less. But F is any multiple whatever of C, and D and E are any equimultiples whatever of A and B; [Construction.

Πληροφορίες βιβλιογραφίας