Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

Proposition 13.

Theorem. If two proportions have in each ratio an antecedent of one the same as a consequent of the other, the other terms are in proportion, antecedent remaining antecedent, and consequent, consequent.

[blocks in formation]

C=mD (IV. 6), and if B =nE, F=nC; therefore F=mnD

[blocks in formation]

Corollary. From this we see that the ratio of A to E is the

product of the ratios of A to Band of B to E; that is, if

[blocks in formation]

Theorem. Equal quantities have the same ratio to the same quantity, and quantities which have the same ratio to the same quantity, are equal to each other.

Let A and B be equal magnitudes, and C another.

[blocks in formation]

Again, if AB, let A

= mC, then (IV. 6) b = mC. Hence

CC'

A = B.

Proposition 15.

Theorem. If two proportions have one ratio in each the

same, the remaining terms are in proportion.

[blocks in formation]

Theorem. If any number of quantities be in proportion, any antecedent is to its consequent, as the sum of all the ante

cedents is to the sum of all the consequents.

[blocks in formation]

then A: B :: A+C+E, etc. : B+D+F, etc.

Let A =mB, then (IV. 6) C=mD and E=mF, etc.

Adding these, we have

A+C+E, etc. = m(B+D+F), etc.,

[blocks in formation]

therefore A : B :: A+ C+E+etc. : B+D+F+etc.

BOOK V.

SIMILAR POLYGONS. MEASUREMENT OF

POLYGONS.

DEFINITIONS.

1. Similar rectilineal fig

ures are those which have

their several angles equal,

each to each, and the sides

about the equal angles proportional.

2. A straight line is cut in extreme and mean ratio when the whole is to the greater segment, as the greater segment is to the less.

3. The altitude of a triangle is the straight line drawn from its vertex perpendicular to the base,

or the base produced.

As any side of a triangle may be considered the base, a triangle may have three altitudes. The altitude of a parallelogram is the perpen

dicular distance between either pair of parallel sides.

4. The homologous sides of similar rectilineal figures are those which are adjacent the equal angles; in triangles they

are those which are opposite the

equal angles. Thus, if A = D,

A

B = E, and C= F, AB and DE are homologous sides, as also AC and DF, and BC and EF. The cor

D

B

[blocks in formation]

responding parts of two figures are
called homologous whether they be lines or angles.

Proposition 1.

Theorem. Rectangles of equal altitude are proportional to their bases.

There are two cases: 1. Where the bases are commensurable. 2. Where the bases are incommensurable.*

1. Let AB and CD be two rectangles having equal altitudes,

[blocks in formation]

* Quantities are commensurable when they exactly contain the same unit; thus, two lines respectively 7 and 4 feet long are commensurable, but two lines respectively 7 and 4 feet long are incommensurable in feet.

[blocks in formation]

Lay off the unit of measure, which we take less than CD, on EB; at least one point of division, as F, will fall between Cand D; draw FG parallel to AE.

Then, according to Case 1,

But

AF: AB:: EF : .

AB: AC:: EB : ED;

... (IV. 13), AF : AC :: EF : ED.

But EF is less than ED, therefore AF is less than AC, which is impossible. Therefore, no other line but EC can be a fourth proportional to AB, AC, and EB.

[blocks in formation]

Corollary 1.-Parallelograms of equal altitude are proportional to their bases.

For any parallelogram is equivalent to a rectangle having the same base and altitude (I. 33).

Corollary 2.-Triangles of equal altitude are proportional to their bases.

For a triangle is half a parallelogram of the same base and altitude (I. 35, Cor.).

« ΠροηγούμενηΣυνέχεια »