V. PURE MATHEMATICS (1). 2. Sides 7x+y = 11, 3x-y+ 1 = 0, x + 3y + 7 = 0 ; bisectors 99x +77y+71 = 0, 7x-9y = 37. 3. A straight line. 4. (i.) A circle; (ii.) an ellipse, parabola, or hyperbola according as the constant is >, =, or < the distance between the centres. OS2 5. Two. 6. When the distance of the point from the origin > BC 8. 8, 2√3. 9. A parabola. VI. PURE MATHEMATICS (2). 1. (i.) 6, -7; (ii.) x = ±a, ±20°; y = ±b, 2a-b 5. 89. 6. sin(A+2B) is positive, cos(A+2B) is negative. a-2b ±2 √3 8. a sin y sin (a + β) 9. 9.65146, 20.5309. VII. MECHANICS. 1. 5.632, 4.792. 3. Tension, W. 2. The c.g. is 3" 19 from A; 12 oz., 17 oz. Pressures on the pegs, √5 w, 2N5w, 4w. 6 3 3 3 ANSWERS. JUNE, 1892. II. ALGEBRA. 1. a-a5b+9ab5. 2. x3+p2x2+pqx+q2. 3. 2x2+3x-5; (2x+5)(2x-5)(x+1)(x – 1), (2x+5)(x−1)(x2 – x – 3). 11. 12th term, -4368a-6; middle term, 12870. 12. 18. 2. V. PURE MATHEMATICS. 1-3x+3x2-3x4+3x-3x7+3x8 - .... 3. 8 and 4. 10. a2. 11. (i.) x+2y=a, 2x−y=a; (ii.) 4x+3y=0, 3x-4y=0; a right angle. 14. 7y2 + 24xy - 24ax - 6ay + 15a2 = 0. Centre, 3 (-a); directrix, 9. Velocities, o, u; distance apart, a-ut. Taking point of projection as origin, and the axes horizontal and vertical, equation to C.G. |