# Euclid's Elements of Geometry, Βιβλία 1-6

Henry Martyn Taylor
The University Press, 1893 - 504 σελίδες
0 Κριτικές
Οι αξιολογήσεις δεν επαληθεύονται, αλλά η Google ελέγχει και καταργεί ψευδές περιεχόμενο όταν το εντοπίζει

### Τι λένε οι χρήστες -Σύνταξη κριτικής

Δεν εντοπίσαμε κριτικές στις συνήθεις τοποθεσίες.

### Δημοφιλή αποσπάσματα

Σελίδα 59 - Any two sides of a triangle are together greater than the third side.
Σελίδα 7 - An angle less than a right angle is called an acute angle; an angle greater than a right angle and less than two right angles is called an obtuse angle.
Σελίδα 68 - If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side, viz.
Σελίδα 144 - If a straight line be bisected, and produced to any point ; the rectangle contained by the whole line thus produced, and the part of it produced...
Σελίδα 376 - To find a mean proportional between two given straight lines. Let AB, BC be the two given straight lines ; it is required to find a mean proportional between them. Place AB, BC in a straight line, and upon AC describe the semicircle ADC, and from the point B draw (9.
Σελίδα 135 - If there be two straight lines, one of which is divided into any number of parts, the rectangle contained by the two straight lines is equal to the rectangles contained by the undivided line, and the several parts of the divided line.
Σελίδα 76 - ... the same side together equal to two right angles ; the two straight lines shall be parallel to one another.
Σελίδα 305 - To inscribe, an equilateral and equiangular pentagon in a given circle. Let ABCDE be the given circle. It is required to inscribe an equilateral...
Σελίδα 424 - PROPOSITION 5. The locus of a point, the ratio of whose distances from two given points is constant, is a circle*.
Σελίδα 248 - If two straight lines within a circle cut one another, the rectangle contained by the segments of one of them is equal to the rectangle contained by the segments of the other. Let the two straight lines AC, BD, within the circle ABCD, cut one another in the point E : the rectangle contained by AE, EC is equal to the rectangle contained by BE, ED.