Αναζήτηση Εικόνες Χάρτες Play YouTube Ειδήσεις Gmail Drive Περισσότερα »
Είσοδος
 Βιβλία Βιβλία 1 - 10 από 178 για The square described on the hypothenuse of a right-angled triangle is equivalent.... The square described on the hypothenuse of a right-angled triangle is equivalent to the sum of the squares described on the other two sides. The Logic and Utility of Mathematics: With the Best Methods of Instruction ... - Σελίδα 233
των Charles Davies - 1850 - 375 σελίδες
Πλήρης προβολή - Σχετικά με αυτό το βιβλίο ## Geometry Without Axioms; Or the First Book of Euclid's Elements. With ...

Thomas Perronet Thompson - 1833 - 150 σελίδες
...PROPOSITION XLVIII. THEOREM. — If the square described on one of the sides of a triangle, be equal to the sum of the squares described on the other two sides of it; the angle made by those two sides is a right angle. Let ABC be a triangle, which is such that... ## Elements of Geometry and Trigonometry

Adrien Marie Legendre - 1838 - 359 σελίδες
...LCBI 78 GEOMETRY, PROPOSITION XI. THEOREM. The square described on the hypothenuse of a right angled triangle is equivalent to the sum of the squares described on the other two sides. Let the triangle ABC be right angled at A. Having described squares on the three sides, let fall from... ## First Lessons in Geometry: With Practical Applications in Mensuration, and ...

Charles Davies - 1840 - 252 σελίδες
...4=90 degrees. 10. In every right angled triangle, the square described on the hypothenuse, is equal to the sum of the squares described on the other two sides. Thus, if ABC be a right angled triangle, right angled at C, then will the square D described on AB... ## Proceedings

...makes the alternate angles equal. 2. If the square described on one of the sides of a triangle be equal to the sum of the squares described on the other two sides, these sides contain a right angle. 3. Divide a given line into two parts, so that the rectangle contained... ## Elements of Plane Geometry: For the Use of Schools

Nicholas Tillinghast - 1844 - 96 σελίδες
...equal to > — ; (See Appendix, Problem IV.) PROP. VII. THEOREM. The square described on the hypotenuse of a right-angled triangle is equivalent to the sum of the squares described on the other two sides. Let the triangle be Fig. 64. KDI, right angled at I. Describe squares on KD, KI, DI ; then we have... ## Elements of Geometry: On the Basis of Dr. Brewster's Legendre : to which is ...

James Bates Thomson - 1844 - 237 σελίδες
...the other two sides; in other words, BC^AB'-f-AC". Therefore, The square described on the hypolhcnuse of a right-angled triangle, is equivalent to the sum of the squares described on the other two sides. Cor. 1. Hence, by transposition, the square of one of the sides of a right-angled triangle is equivalent... ## Practical Arithmetic: Uniting the Inductive with the Synthetic Mode of ...

James Bates Thomson - 1846 - 336 σελίδες
...principle in geometry, that the square described on the hypothenuse of a right-angled triangle, is equal to the sum of the squares described on the other two sides. (Leg. IV. 11. Euc. I. 47.) Thus if the base of the triangle ABC is 4 feet, and the perpendicular 3... ## Elements of Drawing and Mensuration Applied to the Mechanic Arts: A Book for ...

Charles Davies - 1846 - 240 σελίδες
...triangle equal to ? In every right-angled triangle, the square described on the hypothenuse, is equal to the sum of the squares described on the other two sides. Thus, if ABC be a rightangled triangle, right-angled at C, then will the square D, described on AB,... ## Higher Arithmetic: Or, The Science and Application of Numbers; Combining the ...

James Bates Thomson - 1847 - 422 σελίδες
...30. 34967ft-. 371 578. The square described on the hypothenuse of a rightangled triangle, is equal to the sum of the squares described on the other two sides. (Thomson's Legendre, B. IV. 11, Euc. I. 47.) The truth of this principle may be seen from the following... ## Higher Arithmetic: Or, The Science and Application of Numbers; Combining the ...

James Bates Thomson - 1847 - 422 σελίδες
...contains 25 sq. ft. Hence, the square described on the hi/pothenuse of any right-angled triangle, is equal to the sum of the squares described on the other two sides. DBS. Since the square of the hypothenuse BC, is 25, it follows that the , or 5, must be the hypothenuse...