Elements of Plane and Solid Geometry |
Αναζήτηση στο βιβλίο
Σελίδα
NOTE TO THIRD EDITION . In this edition I have endeavored to present a more
rizorous , but not less simple , treatment of Parallels , Ratio , and Limits . The
changes are not sufficient to prevent the simultaneous use of the old and new
editions ...
NOTE TO THIRD EDITION . In this edition I have endeavored to present a more
rizorous , but not less simple , treatment of Parallels , Ratio , and Limits . The
changes are not sufficient to prevent the simultaneous use of the old and new
editions ...
Σελίδα 27
If two parallel straight lines be cut by a third straight line the alternate - interior
angles are equal . A B F E . . . . . . . . . . . . . G - - - - - - - - - - - - - - - - - - - - - - H Let E F
and G H be two parallel straight lines cut by the line BC . We are to prove ZB = 2C
.
If two parallel straight lines be cut by a third straight line the alternate - interior
angles are equal . A B F E . . . . . . . . . . . . . G - - - - - - - - - - - - - - - - - - - - - - H Let E F
and G H be two parallel straight lines cut by the line BC . We are to prove ZB = 2C
.
Σελίδα 28
CONVERSELY : When two straight lines are cut by a third straight line , if the
alternate - interior angles be equal , the two straight lines are parallel . M . . . . . . . .
. . . . Let E F cut the straight lines A B and C D in the points H and K , and let the ...
CONVERSELY : When two straight lines are cut by a third straight line , if the
alternate - interior angles be equal , the two straight lines are parallel . M . . . . . . . .
. . . . Let E F cut the straight lines A B and C D in the points H and K , and let the ...
Σελίδα 29
If two parallel lines be cut by a third straight line , the exterior - interior angles are
equal . A — A Let A B and C D be two parallel lines cut by the straight line E F , in
the points H and K . § 49 We are to prove Z EH B = 2 H K D . LEH B = L A HK ...
If two parallel lines be cut by a third straight line , the exterior - interior angles are
equal . A — A Let A B and C D be two parallel lines cut by the straight line E F , in
the points H and K . § 49 We are to prove Z EH B = 2 H K D . LEH B = L A HK ...
Σελίδα 30
CONVERSELY : When two straight lines are cut by a third straight line , if the
exterior - interior angles be equal , these two straight lines are parallel . Let EF
cut the straight lines A B and C D in the points II and K , and let the Z EHB = {
HKD .
CONVERSELY : When two straight lines are cut by a third straight line , if the
exterior - interior angles be equal , these two straight lines are parallel . Let EF
cut the straight lines A B and C D in the points II and K , and let the Z EHB = {
HKD .
Τι λένε οι χρήστες - Σύνταξη κριτικής
Δεν εντοπίσαμε κριτικές στις συνήθεις τοποθεσίες.
Άλλες εκδόσεις - Προβολή όλων
Συχνά εμφανιζόμενοι όροι και φράσεις
A B C D acute altitude axis base bisect called centre chord circle circumference coincide common cone Cons construct contained COROLLARY cylinder denote describe diagonals diameter difference dihedral angle direction distance divided draw edges equal equal respectively equally distant equilateral equivalent extremities faces fall figure foot formed four frustum given given point greater Hence homologous sides included inscribed intersection joining lateral less limit line drawn mean measured meet middle point oblique opposite parallel pass perimeter perpendicular placed plane plane M N polyhedrons prism PROBLEM proportional PROPOSITION prove pyramid Q. E. D. PROPOSITION radii radius ratio rectangles regular polygon respectively right angles segment Show similar sphere square straight line surface symmetrical Take tangent THEOREM third triangle trihedral vertex vertices volume
Δημοφιλή αποσπάσματα
Σελίδα 40 - If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side, viz.
Σελίδα 124 - To describe an isosceles triangle having each of the angles at the base double of the third angle.
Σελίδα 173 - Any two rectangles are to each other as the products of their bases by their altitudes.
Σελίδα 38 - Any side of a triangle is less than the sum of the other two sides.
Σελίδα 347 - A sphere is a solid bounded by a surface all points of which are equally distant from a point within called the centre.
Σελίδα 81 - A straight line perpendicular to a radius at its extremity is a tangent to the circle. Let MB be perpendicular to the radius OA at A.
Σελίδα 205 - To construct a parallelogram equivalent to a given square, and having the difference of its base and altitude equal to a given line.
Σελίδα 186 - In any triangle, the square of the side opposite an acute angle is equal to the sum of the squares of the other two sides diminished by twice the product of one of those sides and the projection of the other upon that side.
Σελίδα 144 - The areas of two triangles which have an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles. A D A' Hyp. In triangles ABC and A'B'C', To prove AABC A A'B'C' A'B' x A'C ' Proof. Draw the altitudes BD and B'D'.
Σελίδα 132 - In a series of equal ratios, the sum of the antecedents is to the sum of the consequents as any antecedent is to its consequent. Let a: b = c: d — e :/= g: h.