Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

ions for the tangent both of a+b and a−b in terms of the tangent. But the tangent of a+b and a-b may be expressed in terms of the cotangent.

[blocks in formation]

38. By substituting, tan (a+b)=R2=1÷

cot a cot b-R2

cot b cot a

[blocks in formation]

40.* Substituting, tan (a—5)=1÷(Cot a cot b+R2

cot b-cot a

cot a cot b+1

=

cot b-cot a

41. Dividing the first equation by the second, (Art. 208.) we R sin (a+b)_sin a cos b+sin b cos a

have

R sin (a-b) sin a cos b—sin b cos a
sin (a+b)_sin a cos b+sin b cos a
sin (a-b) sin a cos b—sin b cos a

42. Dividing by R,

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]
[blocks in formation]

46. Dividing the numerator, cos (a+b), by sin a sin b, it

becomes, by Art 216,

b+cot a

R
tan b tan a

R

-=(Art. 220) cot

47. Dividing the denominator, cos (a-b), by sin a sin b, it

[blocks in formation]

49. Dividing 3d

(Art. 212,)

=

equation by the 4th. and dividing by R, cos (a+b) cos a cos b-sin a sin b cos (a-b) cos a cos b+sin a sin b 50. Dividing both the numerator and the denominator by

cos b sin

sin b cos a, we obtain the fraction, (cos b

'cos b, sin a

cos a

COS a

[ocr errors]

sin b

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]
[blocks in formation]

54. Dividing both the numerator & the denominator by sin a

cos b, we have the fraction,

cos a sin

cot b-tan
R

[ocr errors]

cot b-tan a

[ocr errors][merged small][merged small]
[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

57. In Art. 218, tan a=tan (a+‡a)=:

R2 (2 tan a)
Ra-tanala

tan b

cot a-tan

+

=

R

R

R

X

R

cot a+tan b

[blocks in formation]

tan a=.

R22
cot a-tan

and because R2 = 1, we have a

2

cot a-tana.

Having proceeded thus far in these analytical investigations, it will be readily seen that they may be carried on to a very great extent. By combining expressions for the sines, tangents, &c. to a sufficient degree, the formula we have obtained, may be multiplied almost indefinitely.

TEN THEOREMS FOR PRACTICE.

Theorem 1. Tan la cota-cot a

1. By Art. 220 b. tan a=2÷(cot a-tana)

2. By Art. 93. R2÷cot a=tan a, and R2-cot a=tan ļa 3. Subst. in the 1st, R÷cot a=2÷(cot a-R2÷cota) 4. Mult. by cot a, R2 ×cot ļa—(R1÷cot 1a)=2 cot a

5. Transposing, R4÷cot a=R2 cota-2cot a
6. Subst. for R2 and R4, 1÷cot a cota-2cot a
7. By Art. 93, R2÷cot a=1÷cot la tan a
8. By substituting in the 6th, tan Ja=cota-2cot a.

Theorem 2. Tana=(1-cos a)÷sin a

1. By theorem 1st, tan acota-2cot a

2. By Art. 220, cot a=R2÷tana, & 2cot a=2R2÷tan a 3. By substituting, tan ļa=(R2÷tan a)-(2R2÷tan a) 4. By Art. 216, R2÷tan a=cot a÷sina, and 2Ra ÷ tan a 2cos asin a

5. Substituting, tan a=(cos la÷÷sin a)-(2cos a÷sin a) 6. By Art. 210, R cos a=cos2 a-sin2 a

7. Multiplying by 2, 2R cos a=cos2 a-2sin2 la

8. Substi. tan }a=

cos 1a__2cos2 1a-2sin2 a

sin a

9. By Alg. 148, tan ja=

2sina cosa

2 sin la cos2 a-cos la sin la+2sin2 a

10. Cancelling 2

a=2sin2

[ocr errors]

2sin2 la cosa

sin la cosa, and dividing by sin la, tan a÷2sin la cos a

11. Art. 210, 2sin2 a=R3-R cos a=numerator in 10th

12. Transp. in equation 1st, Art. 210, 2sin'a = R sin a cosa, which, multiplied by cosa, =R sin a cos,

Ja÷cos ja = R sin a

13. Substituting these values for the numerator and denomin the 10th, tan a=(R2 — R cos a)÷R sin a

14. Substituting 1 for R2 and R, tan da =(1—cos a)÷sin a

Theorem 3. tan a sin a÷(1+cos a)

1. By the preceding formula, tan a=(1-cos a)÷sin a 2. By Art. 210, equa. 5th, sin2 a=R2-R cos a=1—cos a = num. in 1st

den. in 1st a

3. By Art. 210, equa. 1st, sin a=2 sin ja cos ta
4. Substi. in 1st, tan a 2 sin2 a÷2 sin a cos
5. Dividing by 2sin a, tan asin a÷cos a
6. Mult. by 2 cos ja, tan ja=2sin ja costa-2cosa
7. By Art. 210 equa. 1st, 2sin a costa-Rsin a
8. By Art 210 equa. 6th, 2cos2a=R2+R cos a

9. Substituting in the 7th, tan a=R sin a÷(R2+R cos a) 10. Substi. 1 for R2 and R, tan a sin a÷(1+cos a)

Theorem 4. tan2a-(1-cos a)÷(1+cos a)

1. By Art. 216, tan

÷cos a

=R sin cos, and tan a=R sin a

=

2. Involving to the 2d power, tan2a=R2 sin2±a÷cos2

a sina cos2a

3. Multiplying by 2, tan2 a 2 sin2 a÷2 cos2 a 4. By Art. 210, 2 sin2 a⇒R2 – R cos a

5. 66 661

66

2 cos2a=R2+R cos a

6. Substi. in the 3d, tan2a=(R2-R cos a)÷R2+Rcos a 7. Putting 1 for R2 and R, tan2a=(1—cos a)÷(1+cos a)

Theorem 5. sin a=2 tan ja÷(1+tana)

1. By Art 210, equation 1st, sin a=2 sin ja cos a

2. By Art. 216. sin tan cos÷R; that is, sin atan a

cos a

3. Subst. in 1st, sin a=2tan a cosa cos a=2tan a cos2 a 4. By Art. 93, cos=R2÷sec.; that is, cos2 a=R2÷sec2 a; also, by Art. 94, sec2=R2+tan2; that is, seca R2+tan3a

5. By substituting, R2-÷sec2a-R2÷(R2+tan2a) 6. Substi. in 4th, sin a=2 tan a × R2 ÷ (R2 +tana) 7, Putting 1 for R2, sin a=2 tan ja÷(1+tan2ža).

« ΠροηγούμενηΣυνέχεια »