# Woolwich Mathematical Papers for Admission Into the Royal Military Academy for the Years, 1880-1888

E. J. Brooksmith
Macmillan, 1889
0 КсйфйкЭт
Пй бойплпгЮуейт ден ерблзиеэпнфбй, бллЬ з Google елЭгчей кбй кбфбсгеЯ шехдЭт ресйечьменп ьфбн фп енфпрЯжей

### Фй лЭне пй чсЮуфет -Уэнфбоз ксйфйкЮт

Ден енфпрЯубме ксйфйкЭт уфйт ухнЮиейт фпрпиеуЯет.

### Ресйечьменб

 Еньфзфб 1 1 Еньфзфб 2 1 Еньфзфб 3 1 Еньфзфб 4 1 Еньфзфб 5 1 Еньфзфб 6 17 Еньфзфб 7 3 Еньфзфб 8 10
 Еньфзфб 10 1 Еньфзфб 11 1 Еньфзфб 12 1 Еньфзфб 13 17 Еньфзфб 14 Еньфзфб 15 1 Еньфзфб 16 9 Еньфзфб 17 17

### ДзмпцйлЮ брпурЬумбфб

УелЯдб 3 - If a straight line be divided into any two parts, the squares of the whole line, and of one of the parts, are equal to twice the rectangle contained by the whole and that part, together with the square of the other part. Let the straight line AB be divided into any two parts in the point C; the squares of AB, BC are equal to twice the rectangle AB, BC, together with the square of AC.
УелЯдб 4 - If two triangles have one angle of the one equal to one angle of the other and the sides about these equal angles proportional, the triangles are similar.
УелЯдб 3 - In any right-angled triangle, the square which is described upon the side subtending the right angle, is equal to the squares described upon the sides which contain the right angle.
УелЯдб 4 - In obtuse-angled triangles, if a perpendicular be drawn from either of the acute angles to the opposite side produced, the square of the side subtending the obtuse angle, is greater than the squares of the sides containing the obtuse angle, by twice the rectangle contained by the side upon which, when produced, the perpendicular falls, and the straight line intercepted without the triangle, between the perpendicular and the obtuse angle. Let ABC be an obtuse-angled triangle, having the obtuse angle...
УелЯдб 3 - If two triangles have two angles of the one equal to two angles of the other, each to each ; and one side equal to one side, viz. either the sides adjacent to the equal...
УелЯдб 4 - IF a straight line touch a circle, and from the point of contact a straight line be drawn at right angles to the touching line, the centre of the circle shall be in that line.
УелЯдб 4 - In every triangle, the square of the side subtending either of the acute angles is less than the squares of the sides containing that angle, by twice the rectangle contained by either of these sides, and the straight line intercepted between the perpendicular let fall upon it from the opposite angle, and the acute angle.
УелЯдб 3 - IF a side of any triangle be produced, the exterior angle is equal to the two interior and opposite angles ; and the three interior angles of every triangle are equal to two right angles.
УелЯдб 3 - THE angles at the base of an isosceles triangle are equal to one another : and, if the equal sides be produced, the angles upon the other side of the base shall be equal.