# A Key to Dilworth's Arithmetic: Wherein Every Question is Worked Out at Full Length ... Adapted to the American Arithmetician

Smith & Forman, 1812 - 312 СЕКъДЕР

### тИ КщМЕ ОИ ВЯчСТЕР -сЩМТАНГ ЙЯИТИЙчР

дЕМ ЕМТОПъСАЛЕ ЙЯИТИЙщР СТИР СУМчХЕИР ТОПОХЕСъЕР.

### пЕЯИЕВЭЛЕМА

 еМЭТГТА 1 1 еМЭТГТА 2 9 еМЭТГТА 3 10 еМЭТГТА 4 19 еМЭТГТА 5 32 еМЭТГТА 6 40 еМЭТГТА 7 133 еМЭТГТА 8 137
 еМЭТГТА 13 171 еМЭТГТА 14 187 еМЭТГТА 15 189 еМЭТГТА 16 246 еМЭТГТА 17 257 еМЭТГТА 18 266 еМЭТГТА 19 267 еМЭТГТА 20 272

 еМЭТГТА 9 151 еМЭТГТА 10 154 еМЭТГТА 11 155 еМЭТГТА 12 170
 еМЭТГТА 21 279 еМЭТГТА 22 286 еМЭТГТА 23 303

### дГЛОЖИКч АПОСПэСЛАТА

сЕКъДА 30 - They are these : • 1. Divide the second term by the first, multiply the quotient by the third, and the product will be the answer. 2. Divide the third term by the first, multiply the quotient by the second, and the product will be the answer. , 3. Divide the first term by the second, divide the third by the quotient, and the last quotient will be the.
сЕКъДА 30 - Divide the second term by the first, multiply the quotient by the third, and the product will be the answer. 3. Divide the third term by the first, multiply the quotient by the second, and the product will be the answer. 4. Divide the first term by the second, and the third by that quotient, the last quotient will be the answer.
сЕКъДА 136 - ... of additions, that is by 1 less than the number of terms, and add the first term to the product. Hence, we have CASE I.
сЕКъДА 138 - CASE tt 344. Given the first term, the ratio, and the number of terms, to find the sum of the terms. Let a denote the first term, r the ratio, n the number of terms, and i- the sum of the terms. Then, S = a + ar + ar...