A, 3 3 N 3 PN 3 OP 16. To show that sin (180° + A) sin A, cos (180° + A) cos A, Let AOP And let the revolving line take a position such that P2P, is a straight line. Then, evidently, ZAOP, A N3 A 180° + A. Then, as in last Article-P,N, - PLN, P. sin A. OP OP ON ON OP: A) sin A, and A) = cos A, And let the revolving line describe an angle AOP - A. A PIN PN OP OP ON ON ОРІОР Tan ( - A) tan A, cot (- A) cot A, cosec A. COS N sin A, = cos AOP cosec A, 1C A COS A Although the results of Arts. 12, 15, 16, 17 have been proved from diagrams where A is less than a right angle, the student will have no difficulty, if he has understood the proofs, in deducing the B same results for angles of any magnitude whatever. A 18. To show that tan 2 1 sin A A; A Bisect it by the straight line OB, so that ZAOB = 2' and draw CD perpendicular to OA, meeting OB in E. A ED Then tan tan EOD (1). 2 OD OD ED Now (Euc. VI., 2), and .. OC EC OC + OD CD' ED CD CD(OC - OD) CD(OC - OD) OD OC + OD OC - OD CD? Q.E.D. sin A or COS A ° 19. To find the trigonometrical ratios of 15°, 75°, 120°, 135', 150° . (1.) Ratios of 120°. Sin 120° = sin (180° sin (180° - 120°) = sin 60° 2 Cos 120° cos (180° - 120°) cos 60° 1 2' Tan 120° tan (180° - 120°) tan 60° (2.) Ratio of 150° 1 = sin 30° 2' = COS A A = 15, = cos 30° cos 15° 2 2: = cos 15° = (3.) Ratios of 15° A 1 By last Art., tan ; put A = 30°, or 2 sin A 2 13 1 1 2 then tan 15° 2 – 13. sin 30° 2 From this result we easily get, Art. 8, 13 - 1 13 + 1 Sin 15° &c. 2 V2 (4.) Ratios of 75 13 + 1 We have, sin 75o = sin (90° - 159) 2/2 1 V3 - 1 sin (90° – 159) = sin 15° 22 1 tan 75o = tan (90° 15°) = cot 15° 2 13 = 2 + V3, &c. (5.) Ratios of 135o. 1 We have, sin 135o = sin (180° - 135°) = sin 45o = V2' cos 135o = cos (180° – 135°) 1 72 tan 45° 1, &c. cos 750 cos 45o = Ex. III. 1. Define a negative angle, and show that tan (- A) tan A, when A lies between - 90° and - 180°. 2. Trace the changes of sign of sin A .cos A through the four quadrants. 3. Trace the changes of sign of cos A + sin A, and of sin A, as A changes from 45° to 315o, cos A =l 4. Assuming generally that cos 2 A cos' A - sino A, trace the changes of sign of cos 2 A as A changes from – 45° to 315o. 5. Write down the sines of 210', 165°, 240°, -120°. Α. 2 А A 2 sino 2 cos A, show that J2 cos 1 + cos A 2 A and 2 sin vī 2 cos A, when A lies between 360° and 540°. A 8. Given cos A = 1 2 sin? show that sin A 2' A 2 A 2 COS Solve the following equations :10. Cos’ A + jcos A 16. 11. Tan 0 + 5 cot o 6. 2 12. Sin A + sec A 13 + 1. 13. 2 cos? A 3 sin A. 14. Sin (A + B) = cos (A - B) 15. Tan? A = 2 sino A. 16. Sin (3 A + 75°) = cos (2 A 5 17. Sec 0 + cos 0 = tan 0. 23 18. Tan o + coto 4. |