# An Elementary Geometry: Plane, Solid and Spherical

1880 - 240 σελίδες
0 Κριτικές
Οι αξιολογήσεις δεν επαληθεύονται, αλλά η Google ελέγχει και καταργεί ψευδές περιεχόμενο όταν το εντοπίζει

### Τι λένε οι χρήστες -Σύνταξη κριτικής

Δεν εντοπίσαμε κριτικές στις συνήθεις τοποθεσίες.

### Περιεχόμενα

 GEOMETRY 1 BOOK II 35 RELATIONS OF POLYGONS 44 BOOK III 75 BOOK IV 105 BOOK V 113 BOOK VI 135
 POLYEDRONS 157 BOOK VIII 195 BOOK IX 213 Book II 223 Book III 230 Book VI 236

### Δημοφιλή αποσπάσματα

Σελίδα 166 - Any two rectangles are to each other as the products of their bases by their altitudes.
Σελίδα 13 - If two triangles have two sides and the inchtded angle of the one respectively equal to two sides and the included angle of the other, the two triangles are equal in all respects.
Σελίδα 41 - If any number of quantities are proportional, any antecedent is to its consequent as the sum of all the antecedents is to the sum of all the consequents. Let a : b = c : d...
Σελίδα 198 - Each side of a spherical triangle is less than the sum of the other two sides.
Σελίδα 75 - A Circle is a plane figure bounded by a curved line every point of which is equally distant from a point within called the center.
Σελίδα 203 - In an isosceles spherical triangle, the angles opposite the equal sides are equal. In the spherical triangle ABC, let AB equal AC.
Σελίδα 220 - If one angle of a triangle is equal to the sum of the other two, the triangle can be divided into two isosceles triangles.
Σελίδα 136 - A STRAIGHT line is perpendicular to a plane, when it is perpendicular to every straight line which it meets in that plane.
Σελίδα 199 - THEOREM. The sum of the sides of a spherical polygon is less than the circumference of a great circle.
Σελίδα 162 - An oblique prism is equivalent to a right prism whose base is a right section of the oblique prism, and whose altitude is equal to a lateral edge of the oblique prism. Hyp. GM is a right section of oblique prism AD', and GM.' a right prism whose altitude is equal to a lateral edge of AD'. To prove AD' =0= GM'. Proof. The lateral edges of GM