Εικόνες σελίδας
Ηλεκτρ. έκδοση
[ocr errors]

pansion by about 20 percent of the total expansion [170] which results in a slightly larger coefficient for annealed specimens than for un annealed ones [260]. In addition to the change in expansion, a permanent increase in length occurs after heat treatment. An average variation after cooling from 1,000°C was 0.001 percent with a maximum of 0.003 percent [108, 260].

The coefficient of expansion of transparent fused silica is slightly larger than that of the nontransparent [108, 255, 260], a difference amounting to about 25 ppm on the heating cycle and to about 30 ppm on the cooling cycle [108].

Thermal expansion or the instantaneous change of volume with change of temperature [289] can be explained by structural considerations and defined in terms of thermal history and the temperature of measurement. The small coefficient for fused silica as compared to that of quartz could be a direct result of the random structure of the glass [133, 166]. Since a small thermal expansion can take place by a change in average interatomic distance or by a configuration change such as a change in bond angles, an increase of disorder or an increase in structural binding would decrease the expansion coefficient [289], where bond angle changes in the random structure can compensate for other effects which tend to increase the coefficient [153]. The negative coefficient is due to an increase of structural binding with decrease in temperature [166, 170].

5.9 Viscosity

It is principally with reference to the development and improvement of methods of melting and working glasses that the relationship between viscosity and temperature, time, composition, and heat treatment have

been studied. Much of the work done on viscosity is with specimens of commercial glass types, for studies on fused silica are limited by insolubility and by the high temperatures required to decrease the viscosity enough for present experimental conditions [306].

At room temperature and below several hundred degrees centigrade the viscosity is so high that the material is considered as solid; for instance, the viscosity at room temperature has been estimated at about 1060 or 1070 poises which is rather incomprehensible for practical meaning [267]. Preston thus considered that viscosity has an upper limit of definition as well as a lower limit, with a viscosity over 1014 approaching infinity as a quantitative measure. Even in the melt the viscosity is so high that fused silica never really becomes fluid [10]. The viscosity of fused silica at room temperature is so high that movements toward an equilibrium configuration (stabilization) or a configuration appropriate to the temperature at which the glass is used are prevented [117]. The high temperature configuration of the rapidly cooled fibers is retained permanently for all general purposes. The fibers have what is referred to as a low viscosity compared with slowly cooled fused silica, a difference which may account for the differences in properties between the two forms [117].

Studies of the viscosity of fused silica and other glasses are incomplete. The process of viscosity changes due to thermal treatment and the effects of this on the properties of glasses are not completely known. A survey and discussion of the available work and its implications was made by Jones [117]. This and other articles [174, 267, 268, 270, 276 to 280] should be consulted for details of the developments and problems in studies of viscosity.


6.1 Books and Review Articles on Fused Silica and Fused Silica Fibers [1] C. V. Boys, Production, properties and suggested uses of the finest threads, Phil. Mag. 23, 489 (1887).

[2] R. Threlfall, Laboratory Arts, (Macmillan & Co., Ltd., London 1898).

[3] W. A. Shenstone, Vitrified quartz, Nature 64, 65 (1901).

[4] P. Gunther, Quarz glas, (Julius Springer, Berlin


[5] C. V. Boys, Quartz fibers, Dict. Appl. Phys. III, 695 (1923).

[6] R. Paget, Hardness, density and uses of fused silica, J. Roy. Soc. Arts 72, 323 (1924). [7] R. B. Sosman, The properties of silica, (Chemical Catalog Co., New York 1927).

[8] J. Moore, Fused silica in industry, J. Soc. Chem. Ind. 50, 671 (1931).

[9] H. V. Neher, in J. Strong, Procedures in experimental physics, (Prentice-Hall, Inc., New York 1939) Chap. V, VI.

[10] Anon., Fused vitreous silica-its properties and uses, Ceramics 2, 181 (1950).

[11] E. Eberhardt, H. Kern, H. Klumb, Untersuchungen an Quarz faden, Z. angew. Phys. 3, 209 (1951).

6.2 Applications of Silica Fibers

a. Review Articles

[12] F. Emich, Methoden der Mikrochemie, Zweiten Teil: Quantitative Method, Handbuch der Biologischen Arbeitsmethoden, Abderholden, Urban und Schwarzenberg, Berlin (1923) p. 183.

[13] F. A. Gould, Balances, Dict. Appl. Phys. 3, 107


[14] G. Gorbach, Sommelie ferat: die Mikrowaage, Mikrochemie 20, 254 (1936).

[15] B. B. Cunningham, Micro-chemical methods used in nuclear research, Nucleonics 5, 62 (1949). [16] G. Ingram, The submicro balance and its applications, Metallurgia 40, 231, 284 (1949). [17] I. M. Korenman, Y. N. Fertel' meister, Ultramicrobalance, Zavodskaya Lab. 15, 785 (1949). [18] E. Singer, Etat actuel de la technique de la microbalance, J. phys. Radium 12, 534 (1951).

b. Salvoni Type Balance

[19] E. Salvoni, Misura di mas se comprese fra g 10-1 e g 10-6, Messina (1901).

[20] C. B. Bazzoni, Loss of weight of musk in a current of dry air, J. Franklin Inst. 180, 463 (1915).

[21] A. Friedrich, Uber ein verbissertes Modell der vereinfachten Salvoni -Federwaage, Mikrochemie 15, 35 (1934).

[22] H. K. Alber, Improved apparatus for micropreparative work, Ind. Eng. Chem. (Anal. Ed.) 13, 656 (1941).

[23] G. T. Seaborg, The transuranium elements, Science 104, 382 (1946).

[24] B. B. Cunningham, L. B. Werner, The first isolation of Plutonium, J. Am. Chem. Soc. 712, 1524 (1949).

c. Nernst Type Balance

[25] W. Nernst, E. H. Riesenfeld, Uber quantitative Gewichtsanalyse mit sehr kleinen Substanzmengen, Ber. deut. chem. Ges. 362, 2086 (1903).

[26] O. Brill, Uber einige Erfahrerngen beim Gebrauch der Mikrowage für Analysen, Ber. de ut. chem. 38, 140 (1905).

[27] E. H. Reisen feld, H. F. Möller, Eine neue Mikrowage, Z. Elektrochem. 21, 131 (1915).

[28] T. S. Taylor, A determination of the density of helium by means of a quartz microbalance, Phys. Rev. 10, 653 (1917).

[29] A. Stock, G. Ritter, Gasdichte bestimmungen mit

der Schwebewage, Z. physik chim. 119, 333 (1926). [30] W. Cawood, H. S. Patterson, Atomic weights of C, N and F by microbalance method, Phil. Trans. Roy. Soc. [A] 236, 77 (1936).

[31] E. A. Gulbransen, Vacuum microbalance for study

of chemical reactions on metals, Rev. Sci. Inst. 15, 201 (1944).

[32] H. H. Podgurski, A microbalance for oxidation rate studies of Aluminum, Phys. Sci. Develop. Shops, U. of Chicago (1945).

[33] E. A. Gulbransen, New developments in the study of surface chemistry, Metal Progress, 49, 553 (1946).

[34] J. T. Stock, M. A. Fill, A direct reading microbalance for preparative work, Metallurgia, 37-8, 108 (1947-8)

[35] F. C. Edwards, R. R. Baldwin, Magnetically controlled quartz fiber microbalance, Anal. Chem. 23, 357 (1951).

[36] R. S. Bradley, A silica micro-balance; its construction and manipulation, and the theory of its action, J. Sci. Inst. 30, 84 (1953).

d. Beam-Knife Edge and Torsion-Restoration [37] B. D. Steele, K. Grant, Sensitive microbalances and a new method of weighing minute quantities, Proc. Roy. Soc. (London) [A] 82, 580 (1909). [38] B. D. Steele, Attempt to determine changes in weight accompanying disintegration of radium, Nature 84, 428 (1910).

[39] R. W. Grey, W. Ramsay, Density of Niton and Disentegration theory, Proc. Roy. Soc. 84, 536 (1910); 86, 276 (1912).

[40] W. Ramsay, Les mesures de quan ti tie infinitesimales de matieres, Comp. rend. 151, 126 (1910); J. phys. 1, 429 (1911).

[41] W. Ramsay, R. W. Gray, Molecular weight of radium emanation, Engineering 90, 423 (1910).

[42] F. W. Aston, A simple form of micro-balance for determining the densities of small quantities of gases, Proc. Roy. Soc. 89, 442 (1913). [43] H. Pettersson, A new micro-balance and its use, Goteborgs, Kungl. Vetenskaps och VitterhetsSamhalles, Handlingar 16th series (1914) Thesis, U. of Stockholm (1914).

[44] H. Pettersson, R. Stromberg, A new kind of microbalance, Instrument Fabriks A. B. Lych, Malmt argagatan 6, Stockholm, Sweden (1918). [45] H. Pettersson, Experiments with a new micro-balance, Proc. Phys. Soc. London 32, 209 (1920). [46] E. J. Hartung, Observations on the construction and use of the Steele-Grant microbalance, Phil. Mag. 43, 1056 (1922).


[47] R. A. Staniforth, The Kirk-Craig quartz fiber microbalance (Model A), AEC report N-2112 (September 17, 1945).

[48] S. J. Gregg, M. F. Wintle, An automatically recording electrical sorption balance, J. Sci. Inst. 23, 259 (1946).

[49] P. L. Kirk, R. Craig, J. E. Gullberg, R. Q. Boyer, Quartz microgram balance, Ind. Eng. Chem. (Anal. Ed.) 19, 427 (1947).

[50] H. M. El-Badry, C. L. Wilson, The construction and use of a quartz microgram balance. Roy. Inst. Chem., Repts. Sympos. Microbalances, No. 4, 23 (1950).

[51] I. Eyraud, Automatic adsorption balance, J. Chem. Phys. 47, 104 (1950).

[52] P. L. Kirk, Quantitative Ultramicroanalysis (John Wiley & Sons, Inc., New York, 1950) chap. 4. [53] H. Carmichael, Design and performance of a fused silica microbalance, Can. J. Phys. 30, 524 (1952).

[54] J. A. Kuck, P. L. Altieri, A. K. Towne, The Garner heavy duty quartz fiber micro balance, Mikrochim. Acta 3, 254 (1953).

e. Springs

[55] J. W. McBain, A. M. Bakr, A new sorption balance, J. Am. Chem. Soc. 48, 690 (1926).

[56] P. T. Newsome, McBain-Bakr balance for sorption of vapors by fibrous and film materials, Ind. Eng. Chem. 20, 827 (1928).

[57] J. W. McBain, H. G. Tanner, A robust microbalance of high sensitivity, for weighing sorbed films, Proc. Roy. Soc., (London) [A] 125, 579 (1929). [58] A. J. Stamm, S. A. Woodruff, A convenient sixtube vapor sorption apparatus, Ind. Eng. Chem. (Anal. Ed.) 13, 836 (1941).

[59] G. H. Wagner, G. C. Bailey, W. G. Eversole, Determining liquid and vapor densities in closed systems, Ind. Eng. Chem. (Anal. Ed.) 14, 129 (1942).

[60] A. H. Weber, Sister Gonzaga Plantenberg, Rapid and direct measurement of vapor pressure of liquid metals, Phys. Rev. 69, 649 (1946).

[61] R. C. Dunn, H. H. Pomeroy, A vapor-phase sorption study of Iodine and active MgO utilizing the McBain-Bakr spring balance, J. Phys. Coll. Chem. 51, 981 (1947).

[62] I. Sheft, S. Fried, Quartz spring Jolly balance, Rev. Sci. Inst. 19, 723 (1948) AECD-2082. [63] W. O. Milligan, W. C. Simpson, G. L. Bushey,

H. H. Rach ford, R. L. Draper, Precision multiple sorption-desorption apparatus, Anal. Chem. 23, 739 (1951).

f. Miscellaneous Applications

[64] H. Gaudin, Sur les proprietes du cristal de roche fondu, Compt. rend. 8, 678 (1839), from Shenstone 1901.

[65] C. V. Boys, On the Newtonian constant of gravity, Phil. Trans. Roy. Soc. (London) 186, 65 (1895). [66] R. Threlfall, J. A. Pollock, On a quartz thread gravity balance, Phil. Trans. Roy. Soc. (London) [A] 193, 215 (1899).

[67] A. Gautier, Sur les appareils en quartz fondu, Compt. rend. 130, 816 (1900).

[68] B. E. Brauer, The construction of a balance, Inc. Soc. of Inspectors of Weights and Measures, Edinburgh (1909) p. 189.

[69] O. W. Richardson, Note on gravitation, Phil. Mag. 43, 138 (1922).

[70] F. A. Lindemann, A. F. Lindemann, T. C. Kerley, A new form of electrometer, Phil. Mag. 47, 577 (1924).

[71] F. Auerbach, W. Hort, Handbuch der Physikalischen and Technischen Mechanik, Johann A. Barth, Leipzig 6, 113 (1928).

[72] E. Wiesinberger, Die Anwendung der elektromagnetischen Mikrowaage bei der ausführung vor Ruckstandsbestimmingen u Elektolysn, Mikrochemie 10, 10 (1931).

[73] E. A. Johnson, W. F. Steiner, An astatic magnetometer for measuring susceptibility, Rev. Sci. Inst. 8, 236 (1937).

[74] C. C. Lauritsen, T. Lauritsen, A simple quartz fiber electrometer, Rev. Sci. Inst. 8, 438 (1937).

[75] H. Klumb, H. Schwarz, Uber ein absolutes Manometer zur Messung niedrigster Gasdrucke, Z. Phys. 122, 418 (1944).

[76] A. Base, A new cryst at of the gas flow type and quartz fiber microbalance adopted for magnecrystalline measurements, Ind. J. Phys. 21, 274 (1947).

[77] R. H. Barnard, Glass fibers research development, Glass Ind. 33, 144 (1952).

[78] K-D. Mielenz, E. Schönheit, Zur Theorie des Quarz fade nmanometers, Z. angew. Phys. 5, 90 (1953).

[79] H. V. Neher, An automatic ionization chamber, Rev. Sci. Inst. 24, 99 (1953).

[80] L. Parker, B. J. Zack, Silica fibers, U. S. 2,624,658, Jan. 6, 1953 L. Parker, Method of

forming batts of silica fibers, U. S. 2,635,390, April 21, 1953. [81] E. W. Gelewitz, H. C. Thomas, Adsorption studies on clay minerals III A Torsion pendulum adsorption balance, Rev. Sci. Inst. 25, 55 (1954).

6.3 Production and Fabrication Methods

a. Fused Silica

[82] R. S. Hutton, On the fusion of quartz in the electric furnace, Trans. Am. Electrochem. Soc. 2, 105 (1902).

[83] A. L. Day, E. S. Shepherd, Quartz glass, Science 23, 670 (1906).

[84] F. Bottomley, Fused silica, J. Soc. Chem. Ind. 36, 577 (1917).

[85] H. George, Survey of methods of fusing raw quartz and shaping resulting products, Bull. soc. encour. ind. natl. 127, 373 (1928). [86] J. Fortey, Fused quartz manufacture in Germany,

B. I.O.S. report No. 202 (1947).

[87] R. B. Ladoo, Clear fused quartz, Mining Met. 28, 501 (1947).

[88] B. A. Rogers, W. J. Kroll, H. P. Holmes, Production of fused silica, Electrochem. Soc. 92, 115 (1947).

[89] C. Martinez, Influence of small quantities of impurities on the fusion of quartz, Bull. inst. verre 6, 14 (1947).

[90] F. A. Kurlyankin, The influence of pressure on the removal of bubbles in quartz glass during melting, Steklo i Keram. 8 (1951).

b. Fused Silica Fibers and Apparatus

[91] C. V. Boys, The attachment of quartz fibers, Phil. Mag. 37, 463 (1894).

[92] W. W. Coblenz, Investigations of infra-red spectra: Note on blowing fine quartz fibers, Carnegie Inst. Publ. 65, 126 (1906).

[93] H. J. Denham, The construction of simple microbalances, J. Textile Inst. 15, 10 (1924). [94] T. C. Keeley, The preparation and silvering of quartz fibers, J. Sci. Inst. 1, 369 (1924). [95] K. Sliupas, Spiral springs of quartz, Nature

115, 943 (1925).

[96] C. V. Boys, Note on spiral springs of quartz by Sliupas, Nature 115, 944 (1925).

[97] H. D. H. Drane, Quartz helical springs, Phil. Mag. 5, 559 (1928).

[98] J. S. Tapp, A convenient mechanical means of winding quartz spirals, Can. J. Research 6, 584 (1932).

[99] H. W. Weinhart, A machine for winding springs of vitreous silica, Rev. Sci. Inst. 4, 350 (1933).

[100] L. M. Pidgeon, Improved method for construction of quartz spirals, Can. J. Research 10, 252 (1934).

[101] A. King, C. G. Lawson, J. S. Tapp, G. H. Watson, Manufacture of helical silica springs, J. Sci. Inst. 12, 249 (1935).

[102] T. J. O'Donnell, Drawing and working quartz fibers, Argonne National Laboratory, Chicago, Ill. March 1946, reissued-Central development shop, University of Chicago.

[103] M. M. Haring, Notes on quartz fiber drawing sup

plementing Argonne manual on "Drawing and working quartz fibers ", Info. rep. 35, Monsanto Chemical Co., Central Research Dept., Dayton, Ohio (July 30, 1947).

[104] P. L. Kirk, R. Craig, Reproducible construction of quartz fiber devices, Rev. Sci. Inst. 19, 777 (1948).

[105] P. L. Kirk, F. L. Schaffer, Construction and special uses of quartz helix balances, Rev. Sci. Inst. 19, 785 (1948).

[106] L. Singh, A note on the construction of silica springs, J. Sci. Ind. Research [A] 11, 63 (1952).

[107] F. M. Ernsberger, C. M. Drew, Improvements in design and construction of quartz helix balances, Rev. Sci. Inst. 24, 117 (1953).

6.4 Properties of Fused Silica and Glass

a. Review Articles

[108] A. Blackie, On the behavior of fused silica at high temperature, Trans. Faraday Soc. 7, 158 (1911); Collected Researches NPL 8, 139 (1911); Chem. News 104, 77, 86 (1911).

[109] H. L. Watson, Some properties of fused quartz and other forms of silicon dioxide, Bull. Am. Ceram. Soc. 9, 511 (1926).

[110] B. Moore, Influence of characteristics and

treatment of the raw material on the properties of fused silica products and the effect of treatment of the fused product on their products, Trans. Brit. Ceram. Soc. 32, 45 (1932-3). [111] G. Slater, Strength and physical properties of

fine glass fibers and yarns, J. Am. Ceram. Soc. 19, 335 (1936).

[112] G. W. Morey, The properties of glass, ACS Monograph, (Reinhold Publ. Corp., New York, N. Y. 1938).

[113] C. J. Phillips, Glass: The miracle maker, (Pitman Publ. Corp., New York, Chicago 1941). [114] F. W. Preston, Mechanical properties of glass, J. Appl. Phys. 13, 623 (1942).

[115] W. C. Hynd, Physics and the glass industry, Sci. J. Roy. Coll. Sci. 17, 80 (1947). [116] W. A. Weyl, Chemical aspects of some mechanical properties of glass, Research 1, 50 (1947). [117] G. O. Jones, Viscosity and related properties in glass, Repts. Progr. Phys. 12, 133 (1948-9). [118] J. M. Stevels, Progress in the theory of the physical properties of glass (Elsevier Publishing Co., Amsterdam 1948).

] R. N. Haward, The strength of plastics and glass (Cleaver-Hume Press, Ltd. London 1949).

G. O. Jones, F. E. Simon, What is a glass?, Endeavor 8, 175 (1949).

] J. E. Stanworth, Physical properties of glass (Oxford University Press 1950).

] J. Gialanella, Fused quartz, Chem. Eng. 60, 302 (1953).

:] F. E. Wright, Fused quartz, a versatile industrial material, Materials & Methods 37, 98 (1953).

Theory of Glass-Structure, Constitution

+] R. W. Wyckoff, G. W. Morey, X-ray photographs of glass, J. Soc. Glass Technol. 9, 265 (1925). 5] E. Berger, Contributions to the theory of glass formation and the glassy state, J. Am. Ceram. Soc. 15, 647 (1932).

6] W. H. Zachariasen, The atomic arrangement in glass, J. Am. Chem. Soc. 543, 384 (1932); J. Chem. Phys. 3, 162 (1935).

7] B. E. Warren, X-ray determination of the structure of glass, J. Am. Ceram. Soc. 17, 249 (1934). 3] B. E. Warren, H. Krutter, O. Morningstar, Fourier analysis of X-ray patterns of vitreous SiO2 and B203, J. Am. Ceram. Soc. 19, 202 (1936).

9] B. E. Warren, X-ray determination of the structure of liquids and glasses, J. Appl. Phys. 8, 645 (1937).

0] B. E. Warren, J. Biscoe, The structure of silica glass by X-ray diffraction studies, J. Am. Ceram. Soc. 21, 49 (1938).

1 B. E. Warren, Geometrical considerations in glass, J. Soc. Glass Technol. 24, 159 (1940). 2] B. E. Warren, Summary of work on the atomic arrangement in glass, J. Am. Ceram. Soc. 24, 256 (1941).

13] B. E. Warren, The basic principles involved in the glassy state, J. Appl. Phys. 13, 602 (1942).

34] B. E. Warren, X-ray diffraction study of glass, Chem. Rev. 26, 237 (1948).

35] N. A. Shishakov, Crystals of quartz glass,

Compt. rend. acad. sci. URSS, 23, 788 (1939). 36] M. L. Huggins, Silicate glasses, J. Chem. Phys. 8, 641 (1940).

37] E. Preston, Supercooled silicates and their importance in considerations of the liquid state, Proc. Phys. Soc. London 53, 568 (1941).

38] A. G. Pincus, Glass from the atomic view, Ceram. Age 39-40, 38 (1942).

39] M. L. Huggins, K-H. Sun, A. Silverman, The vitreous state, J. Am. Ceram. Soc. 26, 393 (1943). 40] B. Long, Vitreous state, Verre 2, 1 (1947). 41] K. H. Sun, Criteria of glass formation, fundamental condition of glass formation, J. Am. Ceram. Soc. 30, 277 (1947); J. Soc. Glass Technol. 31, 245 (1947).

42] S. M. Cox, An elementary kinetic theory of dilute silica glass, J. Soc. Glass Technol. 32, 340 (1948).

[143] G. O. Jones, What experiments are needed in glass science?, J. Soc. Glass Technol. 32, 382 (1948).

[144] H. O'Daniel, Zur Struktur und Röntgenographie der Silikatgläser, Glastech. Ber. 22, 11 (1948). [145] J. E. Stanworth, On the structure of glass, J. Soc. Glass Technol. 32, 154 (1948).

[146] J. E. Stanworth, The ionic structure of glass,

J. Soc. Glass Technol. 32, 366 (1948).

[147] G. Pincus, Influence of structural chemistry on glass composition, Ceram. Age. 53-54, 299 (1949).

[148] W. H. Otto, F. W. Preston, Evidence against an oriented structure in glass fibers, J. Soc. Glass Technol. 34, 63 (1950).

[149] I. Peyches, The nature of the vitreous state. Glass Ind. 32, 17, 77, 123, 142 (1951); Silicates Ind. 15, 77, 96 (1950).

[150] F. Singer, Nature of glasses, glazes and hardness, Glass Ind. 31, 241, 305, 366 (1950). [151] R. Suzoki, A study of silicate melts, Tech. Rep. Tohoku U. Sendai 15, 11 (1950).

[152] P. Bremond, What is glass?, Glaces et Verres 24, 24 (1951).

[153] W. E. Houth Jr., Crystal chemistry in ceramics,

VIII, The crystal chemistry of glass, Bull. Am.
Ceram. Soc. 30, 203 (1951).

[154] H. Moore, M. Carey, Limiting composition of bi-
nary glasses, J. Soc. Glass Technol. 35, 44

[155] T. Moriya, The constitution of glass, Japan Sci. Rev. 1, 61 (1951).

[156] A. G. Sme kal, On the structure of glass, J. Soc. Glass Technol. 35, 411 (1951).

[157] A. E. Prebus, J. W. Michener, Structure in silicate glasses, Bull. Am. Phys. Soc. (May 1, 1952).

[158] R. Yokota, Color centers in fused quartz, J. Phys. Soc. Japan, 7, 316 (1952).

[159] A. Winter-Klein, Notions generales sur la formation du verre, Verres et réfractaires 6, 271 (1952).

[160] B. K. Banerjee, X-ray study of glass fibers, J. Am. Ceram. Soc. 36, 294 (1953).

[161] R. T. Brannen, Further evidence against the orientation of structure in glass fibers, J. Am. Ceram. Soc. 36, 230 (1953).

[162] I. Simon, H. O. McMahon, Study of the structure of quartz, cristobalite and vitreous silica by reflection in infrared, J. Chem. Phys. 21, 23 (1953).

c. Structural and Property Relationships [163] E. N. Andrade, J. G. Martindale, Physical properties of thin metal films, Phil. Trans. Roy. Soc. (London) 235, 69 (1935).

[164] E. N. Andrade, L. C. Tsien, On surface cracks in glasses, Proc. Roy. Soc. (London) 159, 346 (1937). [165] E. Seddon, Physical property-temperature relationships, their bearing on the nature of glass, J. Soc. Glass Technol. 23, 36 (1939).

« ΠροηγούμενηΣυνέχεια »