Εικόνες σελίδας
Ηλεκτρ. έκδοση

pansion by about 20 percent of the total expansion (170) which results in a slightly larger coefficient for annealed specimens than for unannealed ones (260). In addition to the change in expansion, a permanent increase in length occurs after heat treatment. An average variation after cooling from 1,000°C was 0.001 percent with a maximum of 0.003 percent (108, 260).

The coefficient of expansion of transparent fused silica is slightly larger than that of the non transparent (108, 255, 260), a difference amounting to about 25 ppm on the heating cycle and to about 30 ppm on the cooling cycle (108).

Thermal expansion or the instantaneous change of volume with change of temperature (289) can be explained by structural considerations and defined in terms of thermal history and the temperature of mea su rement. The small coefficient for fused silica as compared to that of quartz could be a direct result of the random structure of the glass (133, 166). Since a small thermal expansion can take place by a change in average interatomic distance or by a configuration change such as a change in bond angles, an increase of disorder or an increase in structural binding would decrease the expansion coefficient (289), where bond angle changes in the random structure can compensate for other effects hich tend to increase the coefficient (153). The negative coefficient is due to an increase of structural binding with decrease in temperature (166, 170).

been studied. Much of the work done on viscosity is with specimens of commercial glass types, for studies on fused silica are limited by insolubility and by the high temperatures required to decrease the viscosity enough for present experimental conditions (306).

At room temperature and below several hundred degrees centigrade the viscosity is so high that the material is considered as solid; for instance, the viscosity at room temperature has been estimated at about 1060 or 1070 poises which is rather incomprehensible for practical meaning (267). Preston thus considered that viscosity has an upper limit of definition as well as a lower limit, with a viscosity over 1014 approaching infinity as a quantitative measure. Even in the melt the viscosity is so high that fused silica never really becomes fluid (10). The viscosity of fused silica at room temperature is so high that movements toward an equilibrium configuration (stabilization) or a configuration appropriate to the temperature at which the glass is used are prevented [117]. The high temperature configuration of the rapidly cooled fibers is retained permanently for all general purposes.

The fibers have what is referred to as a low viscosity compared with slowly cooled fused silica, a difference which may account for the differences in properties between the two forms (117).

Studies of the viscosity of fused silica and other glasses are incomplete. The process of viscosity changes due to thermal treatment and the effects of this on the properties of glasses are not completely known. A survey and discussion of the avail. able work and its implications was made by Jones (117). This and other articles (174, 267, 268, 270, 276 to 280) should be consulted for details of the developments and problems in studies of viscosity.

5.9 Viscosity

It is principally with reference to the development and improvement of methods of melting and working glasses that the relationship between viscosity and temperature, time, composition, and heat treatment have


6.1 Books and Review Articles on Fused Silica and Fused Silica Fibers

[21] A. Friedrich, Uber ein verbi ssertes Modell der

vereinfachten Salvoni -Federwaage, Mikrochemie 15,

35 (1934). [22] H. K. Alber, Improved apparatus for microprepara

tive work, Ind. Eng. Chem. (Anal. Ed.) 13, 656

(1941). [23] G. T. Seaborg, The transu ranium elements, Science

104, 382 (1946). (24) B. B. Cunningham, L. B. Werner, The first isola

tion of Plutonium, J. Am. Chem. Soc. 712, 1524 (1949).

(1) c. V. Boys, Production, properties and suggested

uses of the finest threads, Phil. Mag. 23, 489

(1887). [2] R. Threlfall, Laboratory Arts, (Macmillan & Co.,

Ltd., London 1898), [3] W. A. Shenstone, Vitrified quartz, Nature 64, 65

(1901). [4] P. Gunther, Cuarzglas, (Julius Springer, Berlin

1911). [5] C. V. Boys, Quartz fibers, Dict. Appl. Phys. III,

695 (1923). [6] R. Paget, Hardness, density and uses of fused

silica, J. Roy. Soc. Arts 72, 323 (1924). [7] R. B. Sosman, The properties of silica, (Chemical

Catalog Co., New York 1927). [8] J. Moore, Fused silica in industry, J. Soc. Chem.

Ind. 50, 671 (1931). [9] H. V. Neher, in J. Strong, Procedures in experi

mental physics, (Prentice-Hall, Inc., New York

1939) Chap. V, VI. (10) Anon., Fused vitreous silica-its properties and

uses, Ceramics 2, 181 (1950). (11) E. Eberhardt, H. Kern, H. Klumb, Untersuchungen an

Quarz faden, Z. angew. Phys. 3, 209 (1951).

6.2 Applications of Silica Fibers

c. Nernst Type Balance (25] W. Nernst, E. H. Riesen feld, Uber quantitative

Gewichtsana lyse mit sehr kleinen Substan zmengen,

Ber. deut. chem. Ges. 362, 2086 (1903). [26] 0. Brill, Uber einige Erfahrerngen beim Gebrauch

der Mikrowage für Analysen, Ber. de ut. chem. 38,

140 (1905). [27] E. H. Rei sen feld, H. F. Möller, Eine neue Mikro

wage, Z. Elektrochem. 21, 131 (1915). [28] T. S. Taylor, A determination of the density of

helium by means of a quartz microbalance, Phys.

Rev. 10, 653 (1917). (29) A. Stock, G. Ritter, Gasdichtebestimmungen mit

der Schwebewage, Z. physik chim. 119, 333 ( 1926). (30) W. Cawood, H. S. Patterson, Atomic weights of C,

N and F by micro balance method, Phil. Trans.

Roy. Soc. [A] 236, 77 (1936). (31) E. A. Gulbransen, Vacuum microba lance for study

of chemical reactions on metals, Rev. Sci. Inst.

15, 201 (1944). (32] H. H. Podgurski, A microbalance for oxidation

ra te studies of Aluminum, Phys. Sci. Develop.

Shops, U. of Chicago (1945). [33] E. A. Gulbransen, New developments in the study

of surface chemistry, Metal Progress, 49, 553

(1946). (34) J. T. Stock, M. A. Fill, A direct reading micro

balance for prepara ti ve work, Metallurgia, 37-8,

108 (1947-8) (35) F. C. Edwards, R. R. Baldwin, Magnetically con

trolled quartz fiber microba lance, Anal. Chem.

23, 357 (1951 ). (36) R. S, Bradley , A silica micro-ba lance; its con

struction and mani pulation, and the theory of its action, J. Sci. Inst. 30, 84 (1953).

a. Review Articles
(12) F. Emich, Methoden der Mikrochemie, Zweiten Teil:

Quantitative Method, Handbuch der Biologischen
Arbeitsmethoden, Abderholden, Urban und

Schwarzenberg, Berlin (1923) p. 183. (13) F. A. Gould, Balances, Dict. Appl. Phys. 3, 107

(1923). (14) G. Gorbach, Sommelieferat: die Mikrowaage, Mi

krochemie 20, 254 (1936). (15) B. B. Cunningham, Micro-chemical methods used in

nuclear research, Nucleonics 5, 62 (1949). (16) G. Ingram, The submicro balance and its applica

tions, Metallurgia 40, 231, 284 (1949). (17) I. M. Korenman, Y. N. Fertel'meister, Ultramicro

balance, Zavodskaya Lab. 15, 785 (1949). (18! E, Singer, Etat actuel de la technique de la mi

crobalance, J. Phys. Radium 12, 534 (1951).

b. Salvoni Type Balance (19) E. Salvoni, Misura di mas se comprese fra g 10-1

e g 10-6, Messina (1901). [20] C. B. Bazzoni, Loss of weight of musk in a current

of dry air, J. Franklin Inst. 180, 463 (1915).

d. Beau-Knife Edge and Torsion-Restoration (37) B. D. Steele, K. Grant, Sensitive microbalances

and a new method of weighing minu te quantities,

Proc. Roy. Soc. (London) (A) 82, 580 (1909). (38) B. D. Steele, At tempt to detemine changes in

weight accompanying di sintegration of radium, Nature 84, 428 (1910).

[60] A. H. Weber, Sister Gonzaga Plan tenberg, Rapid

and direct measurement of vapor pressure of liq

uid metals, Phys. Rev. 69, 649 (1946). [61] R. C. Dunn, H. H. Pomeroy, A vapor-phase sorption

study of Iodine and active MgO utilizing the McBain-Bakr spring balance, J. Phys. Coll. Chem.

51, 881 (1947). (62] I. Sheft, S. Fried, Quartz spring Jolly balance,

Rev. Sci. Inst. 19, 723 (1948) AECD-2082. [63] W. 0. Milligan, W. C. Simpson, G. L. Bushey,

H. H. Rach ford, R. L. Draper, Precision multiple sorption-desorption apparatus, Anal. Chem. 23, 739 (1951).

(39) R. W. Grey, W. Ramsay, Density of Niton and Dis

entegration theory, Proc, Roy. Soc. 84, 536

(1910); 86, 276 (1912). [40] W. Ramsay, Les mesures de quantitie infinitesimales

de matieres, Comp. rend. 151, 126 (1910); J.

phys. 1, 429 (1911). [41] W. Ramsay, R. W. Gray, Molecular weight of radium

emanation, Engineering 90, 423 (1910). [42] F. W. Aston, A simple form of micro-balance for

determining the densi ties of small quantities of

gases, Proc. Roy. Soc. 89, 442 (1913). [43] H. Pettersson, A new micro-balance and its use,

Goteborgs, Kungl. Vetenskaps och Vitterhets-
Samhalles, Handlingar 16th series (1914) Thesis,

U. of Stockholm (1914). [44] H. Pettersson, R. Stromberg, A new kind of micro

balance, Instrument Fabriks A. B. Lych,

Malmtarga ga tan 6, Stockholm, Sweden (1918). [45] H. Pettersson, Experiments with a new micro-bal

ance, Proc. Phys. Soc. London 32, 209 (1920). [46] E. J. Hartung, Observations on the construction

and use of the Steele-Grant microba lance, Phil.

Mag. 43, 1056 (1922). (47) R. A. Stani forth, The Kirk-Craig quartz fiber mi : crobalance (Model A), AEC report N-2112 (Sep

tember 17, 1945). [48] S. J. Gregg, M. F. Wintle, An automatically re

cording electrical sorption balance, J. Sci.

Inst. 23, 259 (1946). [49] P. L. Kirk, R. Craig, J. E. Gullberg, R. Q.

Boyer, Quartz microgram balance, Ind. Eng. Chem.

(Anal. Ed.) 19, 427 (1947). + [50] H. M. E l-Badry, C. L. Wilson, The construction

and use of a quartz microgram balance. Roy. Inst. Chem., Repts. Sympos. Microbal ances, No.

4, 23 (1950). [51] 1. Eyraud, Automatic adsorpti on balance, J. Chem.

Phys. 47, 104 (1950). (52) P. L. Kirk, Quantitative Ultramicroanalysis (John

Wiley & Sons, Inc., New York, 1950) chap. 4. (53) H. Carmichael, Design and performance of a fused

silica microbalance, Can. J. Phys. 30, 524

(54) J. A. Kuck, P. L. Altieri, A. K. Towne, The

Gamer heavy duty quartz fiber micro balance,
Mikrochim. Acta 3, 254 (1953).

f. Miscellaneous Applications (64) H. Gaudin, Sur les proprietes du cristal de rochie

fondu, Compt, rend. 8, 678 (1839), from

Shenstone 1901. (65) C. V. Boys, On the Newtonian constant of gravity,

Phil. Trans. Roy. Soc. (London) 186, 65 (1895). (66) R. Threlfall, J. A. Pollock, On a quartz thread

gravity balance, Phil. Trans. Roy. Soc. (London)

(A) 193, 215 (1899). (67) A. Gautier, Sur les appareils en quartz fondu,

Compt. rend. 130, 816 (1900). [68] B. E. Brauer, The construction of a balance, Inc.

Soc. of Inspectors of Weights and Measures,

Edinburgh (1909) p. 189. (69) 0. W. Richardson, Note on gravitation, Phil. Mag.

43, 138 (1922). (70) F. A. Lindemann, A. F. Lindemann, T. C. Kerley, A

new form of electrometer, Phil. Mag. 47, 577

(1924). (71) F. Auerbach, W. Hort, Handbuch der Physikalischen

and Technischen Mechanik, Johann A. Barth,

Leipzig 6, 113 (1928). (72) E. Wiesinberger, Die Anwendung der elektromagnetischen Mikrowaage bei der aus

asführung vor Ruckstandsbestimmingen u Elektolysn, Mikrochemie

10, 10 (1931). [73] E. A. Johnson, W. F. Steiner, An astatic magne

tometer for measuring susceptibility, Rev. Sci.

Inst. 8, 236 (1937). [74] C. C. Lauritsen, T. Lauritsen, A simple quartz

fiber electrometer, Rev. Sci. Inst. 8, 438

(1937). (75) H. Klumb, H. Schwarz, Uber ein absolutes Manome

ter zur Messung niedrigster Gasdrucke, Z. Phys.

122, 418 (1944). (76) A. Base, A new crystat of the gas flow type and

quartz fiber microbalance adopted for magnecrystalline measurements, Ind. J. Phys. 21, 274

(1947). [77] R. H. Barnard, Glass fibers research development,

Glass Ind. 33, 144 (1952). [78] K-D. Mielenz, E. Schönheit, Zur Theorie des

Quarzfadenmanometers, Z. angew. Phys. 5, 90

(1953). [79] H. V. Neher, An automatic ionization chamber,

Rev. Sci. Inst. 24, 99 (1953). [80] L. Parker, B. J. Zack, Silica fibers, U. S. 2,624,658, Jan. 6, 1953 L. Parker, Method of

e. Springs (55) J. W. McBain, A. M. Bakr, A new sorption balance,

J. Am. Chem. Soc. 48, 690 (1926). [56] P. T. Newsome, McBain-Bakr balance for sorption

of vapors by fibrous and film materials, Ind.

Eng. Chem. 20, 827 (1928). (57) J. W. McBain, H. G. Tanner, A robust microbalance

of high sensitivity, for weighing sorbed films,

Proc. Roy. Soc., (London) (A) 125, 579 (1929). (58) A. J. Stamm, S. A. Woodruff, A convenient six

tube vapor sorption appa ra tus, Ind. Eng. Chem.

(Anal. Ed.) 13, 836 (1941). [59) G. H. Wagner, G. C. Bailey, W. G. Eversole, De

termining liquid and vapor densities in closed systems, Ind. Eng. Chem. (Anal. Ed.) 14, 129 ( 1942).

forming batts of silica fibers, U. S. 2,635, 390,

April 21, 1953. (81) E. W. Gelewitz, H. C. Thomas, Adsorption studies

on clay minerals III A Torsion pendulum adsorption balance, Rev. Sci. Inst. 25, 55 (1954).

6.3 Production and Fabrication


a. Fused Silica

(101) A. King, C. G. Lawson, J. S. Tapp, G. H. Watson,

Manufacture of helical silica springs, J. Sci.

Inst. 12, 249 (1935). (102] T. J. O'Donnell, Drawing and working quartz fi

bers, Argonne National Laboratory, Chicago,
Ill. March 1946, reissued - Central development

shop, University of Chicago. (103] M. M. Haring, Notes on quartz fiber drawing sup

plement ing Argonne manual on "Drawing and working quartz fibers ", Info. rep. 35, Monsanto Chemical Co., Central Research Dept., Dayton,

Ohio (July 30, 1947). (104) P. L. Kirk, R. Craig, Reproducible construction

of quartz fiber devices, Rev. Sci. Inst. 19,

777 (1948). (105) P. L. Kirk, F. L. Schaffer, Construction and

special uses of quartz helix balances, Rev.

Sci. Inst. 19, 785 (1948). (106] L. Singh, A note on the construction of silica

springs, J. Sci. Ind. Research (A) 11, 63

(1952). (107) F. M. Ernsberger, C. M. Drew, Improvements in

design and construction of quartz helix bal-
ances, Rev. Sci. Inst. 24, 117 (1953).

[82] R. S. Hutton, On the fusion of quartz in the

electric furnace, Trans. Am. Electrochem. Soc.

2, 105 (1902). [83] A. L. Day, E. S. Shepherd, Quartz glass, Science

23, 670 (1906). (84) F. Bottomley, Fused silica, J. Soc. Chem. Ind.

36, 577 (1917). (85) H. George, Survey of methods of fusing raw

quartz and shaping resulting products, Bull.

soc. encour, ind. natl. 127, 373 (1928). (86) J. Fortey, Fused quartz manufacture in Germany,

B.1.0.S. report No. 202 (1947). [87] R. B. Ladoo, Clear fused quartz, Mining Met. 28,

501 (1947). (88) B. A. Rogers, W. J. Kroll, H. P. Holmes, Produc

tion of fused silica, Electrochem. Soc. 92, 115

(1947). [89] C. Martinez, Influence of small quantities of

impurities on the fusion of quartz, Bull. inst.

verre 6, 14 (1947). (90) F. A. Kurlyankin, The influence of pressure on

the removal of bubbles in quartz glass during melting, Steklo i Keram. 8 (1951).

[blocks in formation]

b. Fused Silica Fibers and Apparatus


(91) C. V. Boys, The attachment of quartz fibers,

Phil. Mag. 37, 463 (1894). [92] W. W. Coblenz, Investigations of infra-red spec

Note on blowing fine quartz fibers, Carnegie Inst. Publ. 65, 126 (1906). [93] H. J. Denham, The construction of simple micro

balances, J. Textile Inst. 15, 10 (1924). [94] T. C. Keeley, The preparation and silvering of

quartz fibers, J. Sci. Inst. 1, 369 (1924). (95) K. Sliupas, Spiral springs of quartz, Nature

115, 943 (1925). (96) C. V. Boys, Note on spiral springs of quartz by

Sliupas, Nature 115, 944 (1925). [97] H. D. H. Drane, Quartz helical springs, Phil.

Mag. 5, 559 (1928). [98] J. S. Tapp, A convenient mechanical means of

winding quartz spirals, Can. J. Research 6, 584

(1932). [99] H. W. Weinhart, A machine for winding springs

of vitreous silica, Rev. Sci. Inst. 4, 350

(1933). (100) L. M. Pidgeon, Improved method for construction

of quartz spirals, Can. J. Research 10, 252

(108) A. Blackie, On the behavior of fused silica at

high temperature, Trans. Faraday Soc. 7, 158
(1911); Collected Researches NPL 8, 139 (1911);

Chem. News 104, 77, 86 (1911). (109) H. L. Watson, Some properties of fused quartz

and other forms of silicon dioxide, Bull. Am.

Ceram. Soc. 9, 511 (1926). (110) B. Moore, Influence of characteristics and

treatment of the raw material on the properties of fused silica products and the effect of treatment of the fused product on their prod

ucts, Trans. Brit. Ceram. Soc. 32, 45 (1932-3). (111] G. Slater, Strength and physical properties of fine glass fibers and yarns,

J. Am. Ceram. Soc. 19, 335 (1936). [112] G. W. Morey, The properties of glass, ACS Mono

graph, (Reinhold Publ. Corp., New York, N. Y.

1938). (113) C. J. Phillips, Glass: The miracle maker, (Pit

man Publ. Corp., New York, Chicago 1941). (114) F. W. Preston, Mechanical properties of glass,

J. Appl. Phys. 13, 623 (1942). (115] W. C. Hynd, Physics and the glass industry, Sci.

J. Roy. Coll. Sci. 17, 80 (1947). (116) W. A. Weyl, Chemical aspects of some mechanical

properties of glass, Research 1, 50 (1947). (117) G. 0. Jones, Viscosity and related properties in

glass, Repts. Progr. Phys. 12, 133 (1948-9). (118) J. M. Stevels, Progress in the theory of the

physical properties of glass (Elsevier Publishing Co., Amsterdam 1948).

] R. N. Haward, The strength of plastics and glass

(Cleaver-Hume Press, Ltil. London 1949). 1) G. O. Jones, F. E. Simon, What is a glass?, En

deavor 8, 175 (1949). ] J. E. Stanworth, Physical properties of glass

(Oxford University Press 1950). ) J. Gialanella, Fused quartz, Chem. Eng. 60, 302

(1953). :] F. E. Wright, Fused quartz, a versatile indus

trial material, Materials & Methods 37, 98

[ocr errors]

Theory of Glass-Structure, Constitution

(143] G. 0. Jones, What experiments are needed in

glass science?, J. Soc. Glass Technol. 32, 382

(1948). (144] H. O'Daniel, Zur Struktur und Röntgenographie der

Silikatgläser, Glastech. Ber. 22, 11 (1948). (145) J. E. Stanworth, On the structure of glass, J.

Soc. Glass Technol. 32, 154 (1948). (146) J. E. Stanworth, The ionic structure of glass,

J. Soc. Glass Technol. 32, 365 (1948). (147) G. Pincus, Influence of structural chemistry on

glass composition, Ceram. Age. 53-54, 299

(1949). [148] W. H. Otto, F. W. Preston, Evidence against an

oriented structure in glass fibers, J. Soc.

Glass Technol. 34, 63 (1950). (149) I. Peychès, The nature of the vitreous state.

Glass Ind. 32, 17, 77, 123, 142 (1951);

Silicates Ind. 15, 77, 96 (1950). (150) F. Singer, Nature of glasses, glazes and hard

ness, Glass Ind. 31, 241, 305, 366 (1950). (151) R. Suzoki, A study of silicate melts, Tech. Rep.

Tohoku U. Sendai 15, ii (1950). (152) P. Bremond, What is glass?, Glaces et Verres 24,

24 (1951). [153] W. E. Houth Jr., Crystal chemistry in ceramics,

VIII, The crystal chemistry of glass, Bull. Am.

Ceram. Soc. 30, 203 (1951). (154) H. Moore, M. Carey, Limiting composition of bi

nary glasses, J. Soc. Glass Technol. 35, 44

(1951). (155) T. Moriya, The constitution of glass, Japan Sci.

Rev. 1, 61 (1951). (156) A. G. Smekal, On the structure of glass, J. Soc.

Glass Technol. 35, 411 (1951). (157) A. E. Prebus, J. W. Michener, Structure in sili

cate glasses, Bull. Am. Phys. Soc. (May 1,

1952). (158] R. Yokota, Color centers in fused quartz, J.

Phys. Soc. Japan, 7, 316 (1952). (159) A. Winter-Klein, Notions generales sur la forma

tion du verre, Verres et réfractaires 6, 271

(1952). (160) B. K. Banerjee, X-ray study of glass fibers, J.

Am. Ceram. Soc. 36, 294 (1953). (161) R. T. Brannen, Further evidence against the ori

entation of structure in glass fibers, J. Am.

Ceram. Soc. 36, 230 (1953). [162] I. Simon, H. 0. McMahon, Study of the structure

of quartz, cristobalite and vitreous silica by
reflection in infrared, J. Chem. Phys. 21, 23

+] R. W. Wyckoff, G. W. Morey, X-ray photographs of

glass, J. Soc. Glass Technol. 9, 265 (1925). 5) E. Berger, Contributions to the theory of glass

formation and the glassy state, J. Am. Ceram.

Soc. 15, 647 (1932). 6] W. H. Zachariasen, The atomic arrangement in

glass, J. Am. Chem. Soc. 543, 384 (1932); J.

Chem. Phys. 3, 162 (1935). 7] B. E. Warren, X-ray determination of the struc

ture of glass, J. Am. Ceram. Soc. 17, 249 (1934). 3] B. E. Warren, H. Krutter, O. Morningstar, Fou

rier analysis of X-ray patterns of vitreous
SiO2 and B203, J. Am. Ceram. Soc. 19, 202

(1936). 9] B. E. Warren, X-ray determination of the struc

ture of liquids and glasses, J. Appl. Phys. 8,

645 (1937). 0] B. E. Warren, J. Biscoe, The structure of silica

glass by X-ray diffraction studies, J. Am.

Ceram. Soc. 21, 49 (1938). :l] B. E. Warren, Geometrical considerations in

glass, J. Soc. Glass Technol. 24, 159 (1940). 2] B. E. Warren, Summary of work on the atomic ar

rangement in glass, J. Am. Ceram. Soc. 24, 256

(1941). 33] B. E. Warren, The basic principles involved in

the glassy state, J. Appl. Phys. 13, 602

(1942). [4] B. E. Warren, X-ray diffraction study of glass,

Chem. Rev. 26, 237 (1948). 35] N. A. Shishakov, Crystals of quartz glass,

Compt. rend. acad. sci. URSS, 23, 788 (1939). {6] M. L. Huggins, Silicate glasses, J. Chem. Phys.

8, 641 (1940). 37] E. Preston, Supercooled silicates and their im

portance in considerations of the liquid state,

Proc. Phys. Soc. London 53, 568 (1941). 38] A. G. Pincus, Glass from the atomic view, Ceram.

Age 39-40, 38 (1942). 39] M. L. Huggins, K-H. Sun, A. Silverman, The vit

reous state, J. Am. Ceram. Soc. 26, 393 (1943). 40) B. Long, Vitreous state, Verre 2, 1 (1947). 41] K. H. Sun, Criteria of glass formation, funda

mental condition of glass formation, J. Am.
Ceram. Soc. 30, 277 (1947); J. Soc. Glass

Technol. 31, 245 (1947). 42] S. M. Cox, An elementary kinetic theory of di

lute silica glass, J. Soc. Glass Technol. 32, 340 (1948).


c. Structural and Property Relationships (163] E. N. Andrade, J. G. Martindale, Physical prop

erties of thin metal films, Phil. Trans. Roy.

Soc. (London) 235, 69 (1935). (164) E. N. Andrade, L. C. Tsien, On surface cracks in

glasses, Proc. Roy. Soc. (London) 159, 346 (1937). (165) E. Seddon, Physical property-temperature rela

tionships, their bearing on the nature of
glass, J. Soc. Glass Technol. 23, 36 (1939).

« ΠροηγούμενηΣυνέχεια »