Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

cheinungen an Kieselglas und Sonderglasen, Naturwissenschaften 31, 22 (1943).

[167] H. Moore, Physics in glass technology, Repts. Progr. Phys. 11, 342 (1946-7).

[168] R. W. Douglas, The relation between physical properties and structure of glass, J. Soc. Glass Technol. 31, 50 (1947).

[169] L. A. Spitz, D. O. Richards, Surface studies of glass, J. Appl. Phys. 18, 904 (1947). [170] R. W. Douglas, G. A. Jones, A study of configuration changes in glass by means of density measurements, J. Soc. Glass Technol. 32, 309 (1948).

[171] J. Gillod, Le module d'elasticite et l'etat structural des verres, Verres et refractaires 2, 26 (1948).

[172] J. B. Murgatroyd, The delayed elastic effect in glass fibers and the constitution of glass in fiber form, J. Soc. Glass Technol. 32, 291 (1948). [173] A. G. Smekal, A note on some relations between the mechanical strength and the structure of glass, J. Soc. Glass Technol. 32, 378 (1948). [174] J. E. Stanworth, The viscosity and nature of

glass, J. Soc. Glass Technol. 32, 20 (1948). [175] W. A. Weyl, Surface structure and surface properties of crystals and glasses, J. Am. Ceram. Soc. 32, 367 (1949). [176] M. L. Huggins, Stress phenomena from respective viewpoints of solid-state and high polymer physics, J. Appl. Phys. 21, 518 (1950). [177] N. Kreidl, The variability of the optical properties and the structure of glass, Glass Ind.

[blocks in formation]

d. Mechanical Properties of Silica Fibers [181] R. Threlfall, The elastic constants of quartz threads, Phil. Mag. 30, 99 (1890).

[182] S. J. Bernett, Coefficient of absolute rigidity of quartz fibers and time and temperature variations, Phys. Rev. 6, 114 (1898).

[183] J. Joly, Vitrified quartz, Nature 64, 102 (1901).

[184] K. E. Guthe, On fibers resembling fused quartz in their elastic properties, Bull. RS 1, 101 (1904) S7.

[185] F. Horton, On the modulus of rigidity of quartz fibers and temperature coefficient, Phil. Trans. Roy. Soc. (London) 204, 407 (1905). [186] C. H. Lees, J. P. Andrews, L. S. Shave, Variation of Young's modulus at high temperatures, Proc. Phys. Soc. 36, 405 (1923).

quartz- change of Young's modulus with tempera-
ture, Proc. Roy. Soc. (London) [A] 122, 274
(1929).

[188] O. Reinkober, Die Zerreissfestigkeit dünnen
Quarz faden, Physik. Z. 32, 243 (1931).
[189] O. Reinkober, Die Elastizitäts- und Festigkeit-
seigenschaften dünnen Quarzfäden, Physik. Z.

33, 32 (1932).

[190] O. Reinkober, Die Festigkeit und Elastizität vo dünnen Quarzfäden, Physik. Z. 38, 112 (1937). [191] O. Reinkober, Elastizitätseigenschaften von

dünnen Quartzfäden, Physik. Z. 40, 385 (1939). [192] S. Schurkow, (Jurkov) Über den einfluss von adsorbierten Oberflachenschichten auf die Festig keit feiner Quarz fäden, Physik. Z. Sowjetunion 1, 123 (1932).

[193] S. Jurkov, (Schurkow) Effect of increased strength of thin filaments, Tech. Phys. USSR 1, 386 (1935). [194] A. Joffé, A. Walther, Zerreissfestigkeit von dünnen Glasfaden und Glimmerblättchen, Physik. Z. Sowjetunion 1, 132 (1932).

[195] F. O. Anderegg, Strength of glass fibers, J. Ind. Eng. Chem. 31, 290 (1939). [196] J. W. McBain, R. F. Sessions, The sorption of vapors by sugar charcoal over a period of twenty years, J. Colloid Sci. 3, 213 (1948). [197] P-A. Koch. Über die Beziehungen zwischen Feinheit und Festigkeit bei Gläs faden, Glastech. Ber. 22, 161 (1949).

[198] F. M. Ernsberger, Temperature coefficient of the McBain sorption balance, Rev. Sci. Inst. 24, 998 (1953).

e. Mechanical Properties of Glass-Theory [199] A. A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London [A] 221, 163 (1920).

[200] A. A. Griffith, The theory of rupture, Intern. Congr. for Appl. Mech., Delft, 55 (1924). [201] F. W. Preston, Impact modulus of glass, J. Am. Ceram. Soc. 14, 432 (1931).

[202] A. Joffé, Über die mechanische Festigkeit dünner Schichten, Physik. Z. Sowjetunion 1, 137 (1932). [203] F. W. Preston, A note on the concept of brittleness, J. Am. Ceram. Soc. 15, 176 (1932). [204] J. B. Murgatroyd, The strength of glass, J. Soc. Glass Technol. 17, 260 (1933).

[205] F. W. Preston, The surface strength of glass and other materials, J. Soc. Glass Technol. 17, 6 (1933).

[206] A. Joffé, On the mechanism of brittle rupture, Intern. Conf. Phys. 2, 77 (1935).

[207] J. Bailey, An attempt to correlate some tensile strength measurements on glass, Glass Ind. 20,

21, 59, 95, 143 (1939).

[208] E. Orowan, Fatigue of glass under stress, Nature 154, 341 (1944).

[209] J. B. Murgatroyd, R. F. Sykes, Mechanism of brittle rupture, Nature 154, 716 (1945).

of glass, J. Appl. Phys. 17, 189 (1946). 11] F. W. Preston, Strength of glass and duration of stressing, Nature 156, 55 (1945).

12 A. F. Turner, Strength of glass, Glass Ind. 27, 69 (1946).

13] W. A. Weyl, The mechanical strength of glass,

Glass Ind. 27, 17, 74, 126 (1946).

14] H. A. Elliott, An analysis of the conditions for rupture due to Griffith cracks, Proc. Phys. Soc. (London) 59, 208 (1947).

15 J. C. Fisher, J. H. Hollomon, A statistical theory of fracture, Metals Technol. 14, TP2218 (1947).

216] C. Gurney, Delayed fracture in glass, Proc.

Phys. Soc. 59, 169 (1947), Ceramics and Glass 10, 127 (1952).

217] J. B. Murgatroyd, The delayed elastic effect in silicate glasses at room temperature, J. Soc. Glass Technol. 31, 17 (1947).

218] J. B. Murgatroyd, Relation between delayed elastic effect and decay of strength of silicate glasses at room temperature, J. Soc. Glass Technol. 31, 36 (1947).

19] N. W. Taylor, Mechanism of fracture of glass and similar brittle solids, J. Appl. Phys. 18, 943 (1947).

220] J. J. Bickerman, G. H. Passmore, The strength and elasticity of glass fibers, Glass Ind. 29, 144 (1948).

221] S. M. Cox, A kinetic approach to the theory of the strength of glass, J. Soc. Glass Technol. 32, 127 (1948).

222] G. O. Jones, The interpretation of experimental data on the strength of glass, J. Soc. Glass Technol. 33, 120 (1949).

223] E. Orowan, Fracture and strength of solids, Rep. on Prog. Phys. 12, 186 (1948-9).

224] J. V. Fitzgerald, Anelasticity of glass, J. Am. Ceram. Soc. 34, 314 (1951).

225] F. W. Preston, Basic problem of the strength of glass, Glass Ind. 32, 284 (1951).

226] J. V. Fitzgerald, K. M. Loing, G. S. Bachman,

Temperature variation of the elastic moduli of glass, J. Soc. Glass Technol. 36, 90 (1952). 227] G. Slater, Strength of glass, Bull. Am. Ceram. Soc. 31, 276 (1952).

228] D. A. Stuart, O. L. Anderson, Dependence of ultimate strength of glass under constant load on temperature, ambient atmosphere and time, J. Am. Ceram. Soc. 36, 416 (1953).

E. Mechanical Properties of
Glass-Experimental

229] P. Heymans, W. P. Allis, Photoelastic constants of celluloid, glass and fused quartz, J. Math. Phys. MIT 2, 216 (1923).

2301 P. W. Bridgeman, The compressibility of several artificial and natural glasses, Am. J. Sci. 10, 359 (1925).

2311 E. J. Gooding, Investigations on the tensile strength of glass, J. Soc. Glass Technol. 16, 145 (1932).

ticity of glass in relation to temperature, J. Am. Ceram. Soc. 18, 276 (1935). [233] W. B. Emerson, Compressibility of fused quartz glass, BS J. Research 18, 683 (1937).

[234] W. L. Schwalbe, A. E. Badger, W. B. Silverman, Tensile tests of glass, J. Am. Ceram. Soc. 21, 333 (1938).

[235] E. Rexer, Festigkeit gespannter "Glasstabe," Z. tech. Physik. 20, 4 (1939).

[236] H. E. Powell, F. W. Preston, Microstrength of glass, J. Am. Ceram. Soc. 28, 145 (1945). [237] T. C. Baker, F. W. Preston, Fatigue of glass under static loads, J. Appl. Phys. 17, 170 (1946).

[238] T. C. Baker, F. W. Preston, Effect of water on the strength of glass, J. Appl. Phys. 17, 179 (1946).

[239] B. Vonnegut, J. L. Glathart, The effect of temperature on the strength and fatigue of glass rods, J. Appl. Phys. 17, 1082 (1946). [240] C. Gurney, S. Pearson, Effect of the surrounding atmosphere on the delayed fracture of glass, Proc. Phys. Soc. 62, 469 (1949); Ceramics and Glass, 10, 106 (1949).

[241] D. Sinclair, A bending method for measuring the tensile strength and Young's modulus of glass fibers, J. Appl. Phys. 21, 380 (1950). [242] K. Vedam, The elastic and photoelastic constants of fused quartz, Phys. Rev. 78, 472 (1950). [243] S. Pearson, Creep and recovery of a mineral glass at normal temperature, J. Soc. Glass Technol. 36, 105 (1952).

[244] J. W. Marx, J. M. Sivertsen, Temperature dependence of elastic moduli and internal friction of silica and glass, J. Sci. Inst. 24, 81 (1953). [245] H. J. McSkimin, Measurements of elastic constants at low temperature by means of ultrasonic waves, J. Appl. Phys. 24, 988 (1953).

[blocks in formation]

[246] W. Crooks, On the devitrification of silica

glass, Proc. Roy. Soc. London 86, 406 (1911-12). [247] R. C. Ray, Heat of crystallization of quartz, Proc. Roy. Soc. London [A] 101, 515 (1922). [248] J. Frenkel, Note on the relation between speed of crystallization and viscosity, Physik. Z. USSR 1, 498 (1932).

[249] L. J. Trostel, Quartz as a devitrification product of vitreous silica, J. Am. Ceram. Soc. 19, 271 (1936).

[250] E. Preston, Crystallization in silicate slags

and glasses, Trans. Faraday Soc. 37, 209 (1941). [251] H. R. Swift, Some experiments on crystal growth and solution in glasses, J. Am. Ceram. Soc. 30, 165 (1947).

[252] S. B. Bhattachayee, X-ray study of crystallization of amorphous silica, Science and Culture 13, 469 (1948).

[253] D. A. Bailey, Note on the conversion of amorphous silica to quartz, Am. Mineralogist 34, 601 (1949).

[254] H. D. Minchin, Coefficient of expansion of fused quartz, Phys. Rev. 24, 1 (1907).

[255] D. Kaye, The expansion and thermal hysteresis of fused silica, Phil. Mag. 20, 718 (1910). [256] H. L. Callendar, Anisotropic expansion of a drawn tube of vitreous silica, Phil. Mag. [6] 23, 998 (1912). [257] H. Donaldson, Coefficient of expansion of fused silica and mercury, Proc. Phys. Soc. London 24, 186 (1912); Collected Researches NPL 9, 183 (1913).

[258] H. L. Callendar, The expansion of silica, Phys. Soc. London 24, 195 (1911-2); Nature 92, 467 (1913). [259] F. J. Harlow, Thermal expansion of mercury and vitreous silica, Nature 92, 467 (1913), Proc. Phys. Soc. London 26, 85 (1914).

[260] W. H. Souder, P. Hidnert, Thermal expansion of fused silica, BS Sci. Pap. 21, 1 (1929). [261] F. J. Harlow, Thermal expansion of mercury and vitreous silica, Phil. Mag. 7, 674 (1929). [262] R. W. Douglas, J. O. Isard, An apparatus for the measurement of small differential expansions and its use for the study of fused silica, J. Sci. Inst. 29, 13 (1952).

[263] M. D. Karkhanavala, Bibliography of thermal expansion of glasses, Glass Ind. 33, 403 (1952).

i. Viscosity and Thermal Reactions
[264] C. E. Guye, M. Finhorn-Bodzehowski, Sur le

frottement interieur des fils de quartz aux
basses temperatures, Arch. sci. phys. et nat.
41, 287 (1916).

[265] C. E. Guye, A. More in, Frottement interieur des fils de quartz aux températures élevées, Arch. sci. phys. et nat. [5] 2, 351 (1920).

[266] A. Pazziani, C. E. Guye, Influence du recuit sur le frottement interieur des fils de quartz aux températures élevées, Arch. sci. phys. et nat. [5] 6, (1924).

[267] F. W. Preston, The temperature coefficient of

viscosity and its relation to some other properties of liquids and glasses, J. Am. Ceram. Soc. 15, 365 (1932).

[268] S. C. Waterton, The viscosity-temperature relationship and some inferences on the nature of molten and of plastic glass, J. Soc. Glass Technol. 16, 244 (1932).

[269] L. H. Adams, Annealing of glass, J. Franklin Inst. 216, 39 (1933).

[270] H. R. Lillie, Viscosity-time-temperature relations in glass at annealing temperatures, J. Am. Ceram. Soc. 16, 619 (1933). [271] A. Winter, Time problem in annealing, J. Am. Ceram. Soc. 27, 266 (1943).

[272] A. Q. Tool, Relation between inelastic de forma

bility and thermal expansion of glass in its annealing range, J. Am. Ceram. Soc. 29, 240 (1946).

effect on the rate of annealing of glass, J. Soc. Glass Technol. 31, 218 (1947). [274] G. D. Redson, The theoretical development of simplified annealing schedules, J. Soc. Glass Technol. 32, 32 (1948).

[275] P. Acloque, Considerations of some progress in the theories of annealing and toughening, Verres et réfractaires 5, 247 (1951). [276] G. M. Blaimont, J. R. DeBast, P. G. Migeotte, H. P. C. Vandecapelle, A new approach to the study of viscosity of glass in and below the annealing range, J. Soc. Glass Technol. 35, 49 (1951).

[277] W. Capps, Viscosity of glass, J. Colloid Sci. 7 334 (1952).

[278] I. Peyches, The viscous flow of glass at low temperature, J. Soc. Glass Technol. 36, 164 (1952).

[279] R. O. Davies, G. O. Jones, Thermodynamic and kinetic properties of glasses, Advances in Physics 2, 370 (1953).

[280] P. L. Kirby, Internal friction in glass, Part I: Theoretical aspects, J. Soc. Glass Technol. 37, 7 (1953).

j. Other Properties of Fused Silica

[281] A. Dufour, Reduction de la silice par l'hydrogene, Compt. rend. 138, 1101 (1904). [282] L. W. Tilton, A. Q. Tool, Hetrogenity of fused quartz, BS J. Research 3, 619 (1929) RP449. [283] L. H. Milligan, The impact abrasion hardness of certain minerals and ceramic products, J. Am. Ceram. Soc. 19, 187 (1936).

[284] F. Knoop, C. G. Peters, W. B. Emerson, A sensitive pyramidal diamond tool for indentation measurements, NRS J. Research 23, 39 (1939) RP1120.

[285] H. M. Barrett, A. W. Bernie, M. Cohen, Adsorption of water vapor on silica surfaces by direct weighing, J. Am. Chem. Soc. 62, 2839 (1940).

[286] W. W. Winship, Wet and dry chlorine vs materials of chemical plant construction, Chem. Eng. 54, 214 (1947).

[287] R. W. Douglas, J. O. Isard, The action of water and sulphur dioxide on glass, J. Soc. Glass Technol. 33, 289 (1949). [288] I. Franke, The action of pure water, below its critical point on a quartz and fused silica, Bull. soc. Franc. minéral. et crist. 37, 503 (1950).

[289] R. W. Douglas, Density changes in fused silica, J. Soc. Glass Technol. 35, 206 (1951). [290] A. Rudnay, Evaporation of silica, Vacuum 1, 204 (1951).

[291] B. P. Colosky, Thermal conductivity measurements on silica, Bull. Am. Ceram. Soc. 31, 11 (1953). [292] P. W. Bridgman, I. Simon, Effects of very high pressures on glass, J. Appl. Phys. 24, 405 (1953).

fused silica, Nucleonics 11, 48 (1953).

[294] N. J. Grant, Vycor vs silica heat treating

tubes, Metal Progr. 64, 112 (1953).

[295] W. M. Jones, Permeability and soluability of He3 and He in vitreous silica, J. Am. Chem. Soc. 75, 3093 (1953).

296] F. J. Norton, Helium diffusion through glass, J. Am. Ceram. Soc. 36, 90 (1953).

297] H. T. Smyth, J. W. Londeree, G. E. Lorey, Compressibility of vitreous silica, J. Am. Ceram. Soc. 36, 238 (1953).

6.5 Miscellaneous References

[298] C. Hahner, Gases in some optical and other

glasses, J. Research NBS 19, 95 (1937) RP1014. [299] E. C. Riley, J. M. Dallavolle, A study of

quartz-fuzing operations with special reference to the measurement and control of silica fumes, Public Health Reports 54, 352 (1939). [300] Anon., Precautions to be taken when working transparent vitreosil, Thermal Syndicate Ltd. Wallsend Northumberland.

[301] S. R. Scholes, ASTM definition of glass, Glass Ind. 26, 417 (1945).

[302] V. E. Lysaght, The Knoop identer as applied to testing nonmetallic materials, ASTM Bull. No. 138 (1946).

[303] O. Ralston, Quartz and silica, Mining Met. 28, c199 (1947).

[304] R. B. Ladoo, Fused quartz vs fused silica,

Mining Met. 29, 452 (1948).

[blocks in formation]

[308] P. Denton, An interference micrometer for diameter measurements of textile filaments in moisture controlled atmospheres, J. Sci. Inst. 29, 55 (1952).

[309] W. Bobeth, Über Dickenmessungen in Luft an Fasern mit kreisförmigem Querschnitt, Z. ges. Textil-Ind. 54, 189 (1952).

[310] T. H. Garner, Vortex Company, Claremont, California. (advertising brochure).

[311] Microchemical Specialties Co., 1834 University Ave., Berkeley, California (advertising brochure).

[312] General Electric, Fused quartz catalog, Cleveland quartz works lamp division, G. E. Co., Cleveland, Ohio.

[313] Bulletin no. 4 Electric heating mantles, GlassCol Apparatus Co. Inc., Terre Haute, Indiana. [314] Corning Fused Silica, New Products Division, Corning Glass works, Corning, New York, March 1953.

[315] H. Carmichael, personal communication. [316] R. G. Olt, personal communication.

[blocks in formation]

magnetic anisotropy of crystals, Ind. J. Phys. 27, 155 (1953).

W. A. Shenstone, The methods of glass blowing and of working silica in the oxy-gas flame (Longmans, Green and Co. London, 1907).

A. H. S. Holbourn, Production of very fine quartz fibers, J. Sci. Inst. 162, 331 (1939).

W. Bobeth, Beitrag zum Problem der Dickenmessung an Glasfasern, Faserfrosch u. Textiltech. 3, 19 (1952).

R. G. Olt, Improvements in method and equipment for drawing quartz fibers, MLM-656 (Mound Lab. Miamisburg, Ohio, 1954).

WASHINGTON, February 23, 1954.

U. S. GOVERNMENT PRINTING OFFICE: 1956 O-368021

« ΠροηγούμενηΣυνέχεια »