Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

(166) A. Dietzel, Deutung aufälliger Ausdehnungser

cheinungen an Kieselglas und Sonderglasen, Na

turwissenschaften 31, 22 (1943). (167) H. Moore, Physics in glass technology, Repts.

Progr. Phys. 11, 342 (1946-7). (168) R. W. Douglas, The relation between physical

properties and structure of glass, J. Soc.

Glass Technol. 31, 50 (1947). (169) L. A. Spitz, D. O. Richards, Surface studies of

glass, J. Appl. Phys. 18, 904 (1947). (170) R. W. Douglas, G. A. Jones, A study of configu

ration changes in glass by means of density measurements, J. Soc. Glass Technol. 32, 309

(1948). (171) J. Gillod, Le module d'elasticite et l'etat

structural des verres, Verres et refractaires

2, 26 (1948). (172) J. B. Murgatroyd, The delayed elastic effect in

glass fibers and the constitution of glass in fiber form, J. Soc. Glass Technol. 32, 291

(1948). [173] A. G. Smekal, A note on some relations between

the mechanical strength and the structure of

glass, J. Soc. Glass Technol. 32, 378 (1948). (174) J. E. Stanworth, The viscosity and nature of

glass, J. Soc. Glass Technol. 32, 20 (1948). (175] W. A. Weyl, Surface structure and surface prop

erties of crystals and glasses, J. Am. Ceram.

Soc. 32, 367 (1949). [176] M. L. Huggins, Stress phenomena from respective

viewpoints of solid-state and high polymer

physics, J. Appl. Phys. 21, 518 (1950). (177) N. Kreidl, The variability of the optical prop

erties and the structure of glass, Glass Ind.

31, 573 (1950). (178) J. M. Stevels, Relation between the dielectric

losses and the composition of glass, J. Soc.

Glass Technol. 34, 80 (1950). (179) H. H. Blau, The relations of thermal expansion,

composition and structure of glasses, J. Soc.

Glass. Technol. 35, 304 (1951). (180] H. Rawson, Internal stresses caused by disorder

in vitreous material, Nature 171, 169 (1953).

[187] H. D. H. Drane, Elastic constants of fused

quartz- change of Young's modulus with tempera ture, Proc. Roy. Soc. (London) [A] 122, 274

(1929). [188] 0. Reinkober, Die Zerreissfestigkeit dünnen

Quarzfäden, Physik. Z. 32, 243 (1931). (189) 0. Reinkober, Die Elastizitäts- und Festigkeit

seigenschaften dünnen Quarzfäden, Physik. Z.

33, 32 (1932). (190) 0. Reinkober, Die Festigkeit und Elastizität vo

dünnen Quarzfäden, Physik. Z. 38, 112 (1937). [191] 0. Reinkober, Elastizitätseigenschaften von

dünnen Quartzfäden, Physik. 2. 40, 385 (1939). (192] S. Schurkow, (Jurkov) Über den einfluss von ad

sorbierten Öberflachenschichten auf die Festigkeit feiner Quarzfäden, Physik. Z. Sowjetunion

1, 123 (1932). (193] S. Jurkov, (Schurkow) Effect of increased

strength of thin filaments, Tech. Phys. USSR

1, 386 (1935). (194) A. Joffé, A. Walther, Zerreissfestigkeit von

dünnen Gläsfaden und Glimmerblättchen, Physik.

2. Sowjetunion 1, 132 (1932). (195) F. 0. Anderegg, Strength of glass fibers, J.

Ind. Eng. Chem. 31, 290 (1939). (196) J. W. McBain, R. F. Sessions, The sorption of

vapors by sugar charcoal over a period of

twenty years, J. Colloid Sci. 3, 213 (1948). (197) P-A. Koch. Über die Beziehungen zwischen Fein

heit und Festigkeit bei Gläs faden, Glastech.

Ber. 22, 161 (1949). [198] F. M. Ernsberger, Temperature coefficient of the

McBain sorption balance, Rev. Sci. Inst, 24, 998 (1953).

e.

d. Mechanical Properties of Silica Fibers

(181) R. Threlfall, The elastic constants of quartz

threads, Phil. Mag. 30, 99 (1890). (182) S. J. Bernett, Coefficient of absolute rigidity

of quartz fibers and time and temperature vari

ations, Phys. Rev. 6, 114 (1898). (183] J. Joly, Vitrified quartz, Nature 64, 102

(1901). (184) K. E. Guthe, On fibers resembling fused quartz

in their elastic properties, Bull. RS 1, 101

(1904) S7. (185) F. Horton, On the modulus of rigidity of quartz

fibers and temperature coefficient, Phil.

Trans. Roy. Soc. (London)204, 407 (1905). (186) C. H. Lees, J. P. Andrews, L. S. Shave, Varia

tion of Young's modulus at high temperatures, Proc. Phys. Soc. 36, 405 (1923).

Mechanical Properties of Glass - Theory (199) A. A. Griffith, The phenomena of rupture and

flow in solids, Phil. Trans. Roy. Soc. London

[A] 221, 163 (1920). (200) A. A. Griffith, The theory of rupture, Intern.

Congr. for Appl. Mech., Delft, 55 (1924). (201) F. W. Preston, Impact modulus of glass, J. Am.

Ceram. Soc. 14, 432 (1931). (202) A. Joffé, Über die mechanische Festigkeit dünner

Schichten, Physik. Z. Sowjetunion 1, 137(1932). [203] F. W. Preston, A note on the concept of brittle.

ness, J. Am. Ceram. Soc. 15, 176 (1932). (204) J. B. Murgatroyd, The strength of glass, J. Soc.

Glass Technol. 17, 260 (1933). [205] F. W. Preston, The surface strength of glass and

other materials, J. Soc. Glass Technol. 17, 6

(1933). (206) A. Joffé, On the mechanism of brittle rupture,

Intern. Conf. Phys. 2, 77 (1935). (207) J. Bailey, An attempt to correlate some tensile

strength measurements on glass, Glass Ind. 20,

21, 59, 95, 143 (1939). [208] E. Orowan, Fatigue of glass under stress, Nature

154, 341 (1944). [209] J. B. Murgatroyd, R. F. Sykes, Mechanism of

brittle rupture, Nature 154, 716 (1945).

210) J. L. Glathart, F. W. Preston, Fatigue modulus

of glass, J. Appl. Phys. 17, 189 (1946). 211) F. W. Preston, Strength of glass and duration of

stressing, Nature 156, 55 (1945). 212) A. F. Turner, Strength of glass, Glass Ind. 27,

69 (1946). 213] W. A. Weyl, The mechanical strength of glass,

Glass Ind. 27, 17, 74, 126 (1946). 214! H. A. Elliott, An analysis of the conditions for

rupture due to Griffith cracks, Proc. Phys.

Soc. (London) 59, 208 (1947). 215] J. C. Fisher, J. H. Hollomon, A statistical

theory of fracture, Metals Technol. 14, TP2218

(1947). 216) C. Gurney, Delayed fracture in glass, Proc.

Phys. Soc. 59, 169 (1947), Ceramics and Glass

10, 127 (1952). 217] J. B. Murgatroyd, The delayed elastic effect in

silicate glasses at room temperature, J. Soc.

Glass Technol. 31, 17 (1947). 218) J. B. Murgatroyd, Relation between delayed elas

tic effect and decay of strength of silicate glasses at room temperature, J. Soc. Glass

Technol. 31, 36 (1947). 219) N. W. Taylor, Mechanism of fracture of glass and

similar brittle solids, J. Appl. Phys. 18, 943

(1947). (220) J. J. Bickerman, G. H. Passmore, The strength

and elasticity of glass fibers, Glass Ind. 29,

144 (1948). [221] S. M. Cox, A kinetic approach to the theory of

the strength of glass, J. Soc. Glass Technol.

32, 127 (1948). [222] G. (). Jones, The interpretation of experimental

data on the strength of glass, J. Soc. Glass

Technol. 33, 120 (1949). [223] E. Orowan, Fracture and strength of solids, Rep.

on Prog. Phys. 12, 186 (1948-9). [224] J. V. Fitzgerald, Anelasticity of glass, J. Am.

Ceram. Soc. 34, 314 (1951). [225] F. W. Preston, Basic problem of the strength of

glass, Glass Ind. 32, 284 (1951). (226) J. V. Fitzgerald, K. M. Loing, G. S. Bachman,

Temperature variation of the elastic moduli of

glass, J. Soc. Glass Technol. 36, 90 (1952). [227] G. Slater, Strength of glass, Bull. Am. Ceram.

Soc. 31, 276 (1952). (228) D. A. Stuart, 0. L. Anderson, De pendence of ul

timate strength of glass under constant load on
temperature, ambient atmosphere and time, J.
Am. Ceram. Soc. 36, 416 (1953).

(232! A. E. Badger, W. B. Silverman, Modulus of elas

ticity of glass in relation to temperature, J.

Am. Ceram. Soc. 18, 276 (1935). (233) W. B. Emerson, Compressibility of fused quartz

glass, BS J. Research 18, 683 (1937). [234] W. L. Schwalbe, A. E. Badger, W. B. Silverman,

Tensile tests of glass, J. Am. Ceram. Soc. 21,

333 (1938). [235] E. Rexer, Festigkeit gespannter "Glasstabe," Z..

tech. Physik. 20, 4 (1939). (236) H. E. Powell, F. W. Preston, Microstrength of

glass, J. Am. Ceram. Soc. 28, 145 (1945). (2371 T. C. Baker, F. W. Preston, Fatigue of glass

under static loads, J. Appl. Phys. 17, 170

(1946). (238] T. C. Baker, F. W. Preston, Effect of water on

the strength of glass, J. Appl. Phys. 17, 179

(1946). (239) B. Vonnegut, J. L. Glathart, The effect of tem

perature on the strength and fatigue of glass

rods, J. Appl. Phys. 17, 1082 (1946). [240] C. Gurney, S. Pearson, Effect of the surrounding

atmosphere on the delayed fracture of glass, Proc. Phys. Soc. 62, 469 (1949); Ceramics and

Glass, 10, 106 (1949). (241) D. Sinclair, A bending method for measuring the

tensile strength and Young's modulus of glass

fibers, J. Appl. Phys. 21, 380 (1950). (242] K. Vedam, The elastic and photoelastic constants

of fused quartz, Phys. Rev. 78, 472 (1950). [243] S. Pearson, Creep and recovery of a mineral

glass at normal temperature, J. Soc. Glass

Technol. 36, 105 (1952). [244] J. W. Marx, J. M. Sivertsen, Temperature depend

ence of elastic moduli and internal friction of

silica and glass, J. Sci. Inst. 24, 81 (1953). [245] H. J. McSkimin, Measurements of elastic constants

at low temperature by means of ultrasonic waves, J. Appl. Phys. 24, 988 (1953).

g. Devitrification

f. Mechanical Properties of

Glass-Experimental [229] P. Heymans, W. P. Allis, Photoelastic constants

of celluloid, glass and fused quartz, J. Math.

Phys. MIT 2, 216 (1923). (230) P. W. Bridge man, The compressibility of several

artificial and natural glasses, Am. J. Sci. 10,

359 (1925). [231] E. J. Goodink, Investigations on the tensile

strength of glass, J. Soc. Glass Technol. 16, 145 (1932).

[245] W. Crooks, On the devitrification of silica

glass, Proc. Roy. Soc. London 86, 406 (1911-12). [247] R. C. Ray, Heat of crystallization of quartz,

Proc. Roy. Soc. London (A) 101, 515 (1922). [248] J. Frenkel, Note on the relation between speed

of crystallization and viscosity, Physik. Z.

USSR 1, 498 (1932). [249] L. J. Trostel, Quartz as a devitrification prod

uct of vitreous silica, J. Am. Ceram. Soc. 19,

271 (1936). (250) E. Preston, Crystallization in silicate slags

and glasses, Trans. Faraday Soc. 37, 209 (1941). (251] H. R. Swift, Some experiments on crystal growth

and solution in glasses, J. Am. Ceram. Soc. 30,

165 (1947). S. B. Bhattachayee, X-ray study of crystalliza

tion of amorphous silica, Science and Culture

13, 469 (1948).
[253] D. A. Bailey, Note on the conversion of amor-

phous silica to quartz, Am. Mineralogist 34,
601 (1949).

h. Thermal Expansion (254) H. D. Minchin, Coefficient of expansion of fused

quartz, Phys. Rev. 24, 1 (1907). (255) D. Kaye, The expansion and thermal hysteresis of

fused silica, Phil. Mag. 20, 718 (1910). (256) H. L. Callendar, Anisotropic expansion of a

drawn tube of vitreous silica, Phil. Mag. [6]

23, 998 (1912). [257] H. Donaldson, Coefficient of expansion of fused

silica and mercury, Proc. Phys. Soc. London 24, 186 (1912); Collected Researches NPL 9, 183

(1913). [258] H. L. Callendar, The expansion of silica, Phys.

Soc. London 24, 195 (1911-2); Nature 92, 467

(1913). (259) F. J. Harlow, Thermal expansion of mercury and

vitreous silica, Nature 92, 467 (1913); Proc.

Phys. Soc. London 26, 85 (1914). [260] W. H. Souder, P. Hidnert, Thermal expansion of

fused silica, BS Sci. Pap. 21, 1 (1929). (261] F. J. Harlow, The rmal expansion of mercury and

vitreous silica, Phil. Mag. 7, 674 (1929). (262) R. W. Douglas, J. 0. Isard, An apparatus for the

me asurement of small differential expansions and its use for the study of fused silica, J.

Sci. Inst. 29, 13 (1952). (263) M. D. Karkhanavala, Bibliography of the rmal ex

pansion of glasses, Glass Ind. 33, 403 (1952).

(273) G. 0. Jones, Influence of the delayed elastic

effect on the rate of annealing of glass, J.

Soc. Glass Technol. 31, 218 (1947). (274) G. D. Redson, The theoretical development of

simplified annealing schedules, J. Soc. Glass

Technol. 32, 32 (1948). (275? P. Acloque, Considerations of some progress in

the theories of annealing and toughening,

Verres et réfractaires 5, 247 (1951). (276) G. M. Blaimont, J. R. DeRast, P. G. Migeotte,

H. P. C. Vandecapelle, A new approach to the study of viscosity of glass in and below the annealing range, J. Soc. Glass Technol. 35, 44

(1951). (277! W. Capps, Viscosity of glass, J. Colloid Sci. 7,

334 (1952). [278] I. Peyches, The viscous flow of glass at low

temperature, J. Soc. Glass Technol. 36, 104

(1952). (279? R. 0. Davies, G. (. Jones, Thermodynamic and ki.

netic properties of glasses, Advances in Phys

ics 2, 370 (1953). [280] P. L. Kirby, Internal friction in glass, Fart I:

Theoretical aspects, J. Soc. Glass Technol. 37, 7 (1953).

i. Viscosity and Thermal Reactions
(264) C. E. Guye, M. Finhorn-Bodzehowski, Sur le

frottement interieur des fils de quartz aux
basses temperatures, Arch. sci. phys. et nat.

41, 287 (1916). (265) C. E. Guye, A. More in, Frottement interieur des

fils de quartz aux températures élevées, Arch.

sci. phys. et nat. [5] 2, 351 (1920). (266) A. Pazziani, C. E. Guye, Influence du recuit sur

le frottement interieur des fils de quartz aux températures élevées, Arch. sci. phys. et nat.

[5] 6, (1924). (267) F. W. Preston, The temperature coefficient of

viscosity and its relation to some other properties of liquids and glasses, J. Am. Ceram.

Soc. 15, 365 (1932). [268] s. C. Waterton, The viscosity-temperature rela

tionship and some inferences on the nature of molten and of plastic glass, J. Soc. Glass

Technol. 16, 244. (1932). (269) L. H. Adams, Annealing of glass, J. Franklin

Inst, 216, 39 (1933). (270] H. R. Lillie, Viscosity-time-temperature rela

tions in glass at annealing temperatures, J.

Am. Ceram. Soc. 16, 619 (1933). (271) A. Winter, Time problem in annealing, J. Am.

Ceram. Soc. 27, 266 (1943). (272) A. Q. Tool, Relation between inelastic de forma

bility and thermal expansion of glass in its
annealing range, J. Am. Ceram. Soc. 29, 240
(1946).

j. Other Properties of Fused Silica (281) A. Dufour, Reduction de la silice par l'hydro

gene, Compt. rend. 138, 1101 (1904). (282) 1. W. Tilton, A. Q. Tool, Hetrogenity of fused

quartz, BS J. Research 3, 619 (1929) RP449. [283] L. H. Milligan, The impact abrasion hardness of

certain minerals and ceramic products, J. Am.

Ceram. Soc. 19, 187 (1936). (284) F. Knoop, C. G. Peters, W. B. Fmerson, A sensi

tive pyramidal diamond tool for indentation
measurements, NRS J. Research 23, 39 (1939)

RP1120. [285] H. M. Barrett, A. W. Bernie, M. Cohen, Adsorp

tion of water vapor on silica surfaces by direct weighing, J. Am. Chem. Soc. 62, 2839

(1940). (286) H. W. Winship, Wet and dry chlorine vs materials

of chemical plant construction, Chem. Eng. 54,

214 (1947). (287) R. W. Douglas, J. 0. Isard, The action of water

and sulphur dioxide on glass, J. Soc. Glass

Technol. 33, 289 (1949). (288) I. Franke, The action of pure water, below its

critical point on a quartz and fused silica, Bull. soc.

Franç. minéral. et crist. 37, 503 (1950). (289) R. W. Douglas, Density changes in fused silica,

J. Soc. Glass Technol. 35, 206 (1951). (290) A. Rudnay, Evaporation of silica, Vacuum 1, 204

(1951). (291] B. P. Colosky, Thermal conductivity measurements

on silica, Bull. Am. Ceram. Soc. 31, 11 (1953). (292) P. W. Bridgman, I. Simon, Effects of very high

pressures on glass, J. Appl. Phys. 24, 105
(1953).

[ocr errors]

93] A. J. Gale, F. A. Bickford, Radiation- n-resistant

fused silica, Nucleonics 11, 48 (1953). 94) N. J. Grant, Vycor vs silica heat treating

tubes, Metal Progr. 64, 112 (1953). 95] W. M. Jones, Permeability and soluability of He 3

and He 4 in vitreous silica, J. Am. Chem. Soc.

75, 3093 (1953). 36] F. J. Norton, Helium diffusion through glass, J.

Am. Ceram. Soc. 36, 90 (1953). 97] H. T. Smyth, J. W. Londeree, G. E. Lorey, Com

pressibility of vitreous silica, J. Am. Ceram. Soc. 36, 238 (1953).

P. 3.

zur

6.5 Miscellaneous References

98] C. Hahner, Gases in some optical and other

glasses, J. Research NBS 19, 95 (1937) RP1014. 99] E. C. Riley, J. M. Dallavolle, A study of

quartz-fuzing operations with special reference to the measurement and control of silica fumes,

Public Health Reports 54, 352 (1939). 00) Anon., Precautions to be taken when working

transparent vitreosil, Thermal Syndicate Ltd.

Wallsend Northumberland. 01] S. R. Scholes, ASTM definition of glass, Glass

Ind. 26, 417 (1945). 802) V. E. Lysaght, The Knoop identer as applied to

testing nonmetallic materials, ASTM Bull. No.

138 (1946). 03] O. Ralston, Quartz and silica, Mining Met. 28,

c199 (1947). 04] R. B. Ladoo, Fused quartz vs fused silica,

Mining Met. 29, 452 (1948).

(305) F. W. Preston, Solid liquids. The meaning of

'undercooled liquid' or 'supercooled liquid,

J. Soc. Glass Technol. 32, 233 (1948). (306] W. A. Weyl, The use of color and fluorescence

indicators for determining the structure of glasses, High Polymer Physics, Am. Inst. Phys. Remsen Press Div. Chem. Pub. Co. Inc., Brooklyn

(1948). (307) E. Eberhardt, Die beugung elektromagnitischer

Wellen um dieliktrischen Zylinder als Verfahren

Dickenmessung von Quarzfäden, Z. angew.

Phys. 3, 242 (1951). (308) P. Denton, An interference micrometer for diame

ter measurements of textile filaments in moisture controlled atmospheres, J. Sci. Inst. 29,

55 (1952). (309) W. Bobeth, Über Dickenmessungen in Luft an

Fasern mit kreisförmigem Querschnitt, Z. ges.

Textil-Ind. 54, 189 (1952). (310) T. H. Garner, Vortex Company, Claremont, Cali

fornia. (advertising brochure). (311) Microchemical Specialties Co., 1834 University

Ave., Berkeley, California (advertising bro

chure). (312) General Electric, Fused quartz catalog, Cleve

land quartz works lamp division, G. E. Co.,

Cleveland, Ohio. (313] Bulletin no. 4 Electric heating mantles, Glass

Col Apparatus Co. Inc., Terre Haute, Indiana. (314] Corning Fused Silica, New Products Division,

Corning Glass works, Corning, New York, March

1953. (315] H. Carmichael, personal communication. (316) R. G. Olt, personal communication.

[ocr errors]

7. ADDENDUM

H. B. Williams, The Einthoven string galvanometer, a

theoretical and experimental study, J. Optical Soc. Am. 13, 313 (1926). C. Nanjundayya, N. Ahmad, Design of a simple quartz microbalance, Ind. J. Agr. Sci. 13, 649 (1943); Chem. Abst. 42, 3622 (1948). J. A. Kuck, P. L. Altieri, A. K. Towne, Use of the Garner balance in the investigation of errors in the carbon-hydrogen determination, Mikrochim. Acta 4, 1 (1954). F. Harlan, The characteristics of a quartz-fiber elec

troscope, J. Sci. Inst. 31, 424 (1954). S. K. Datta, An accurate determination of the torsion constant of quartz fibers used in measurement of the

magnetic anisotropy of crystals, Ind. J. Phys. 27, 155 (1953). W. A. Shenstone, The methods of glass blowing and of working silica in the oxy-gas flame (Longmans, Green and Co. London, 1907). A. H. S. Holbourn, Production of very fine quartz fi

bers, J. Sci. Inst. 162, 331 (1939). W. Bobeth, Beitrag zum Problem der Dickenmessung an Glasfasern, Faserfrosch u. Textiltech. 3, 19

(1952). R. G. Olt, Improvements in method and equipment for drawing quartz fibers, MLM-656 (Mound Lab. Miamisburg, Ohio, 1954).

WASHINGTON, February 23, 1954.

U. S, GOVERNMENT PRINTING OFFICE : 1956 O - 368021

« ΠροηγούμενηΣυνέχεια »