# The Elements of Euclid: With Many Additional Propositions, & Explanatory Notes, Etc, МЭспт 1

John Weale, 1853 - 136 уелЯдет
0 КсйфйкЭт
Пй бойплпгЮуейт ден ерблзиеэпнфбй, бллЬ з Google елЭгчей кбй кбфбсгеЯ шехдЭт ресйечьменп ьфбн фп енфпрЯжей

### Фй лЭне пй чсЮуфет -Уэнфбоз ксйфйкЮт

Ден енфпрЯубме ксйфйкЭт уфйт ухнЮиейт фпрпиеуЯет.

### Ресйечьменб

 Еньфзфб 1 1 Еньфзфб 2 3 Еньфзфб 3 6 Еньфзфб 4 9 Еньфзфб 5 20 Еньфзфб 6 26 Еньфзфб 7 28 Еньфзфб 8 30
 Еньфзфб 14 64 Еньфзфб 15 69 Еньфзфб 16 75 Еньфзфб 17 79 Еньфзфб 18 80 Еньфзфб 19 81 Еньфзфб 20 83 Еньфзфб 21 85

 Еньфзфб 9 38 Еньфзфб 10 43 Еньфзфб 11 44 Еньфзфб 12 52 Еньфзфб 13 62
 Еньфзфб 22 106 Еньфзфб 23 113 Еньфзфб 24 118 Еньфзфб 25 119 РнехмбфйкЬ дйкбйюмбфб

### ДзмпцйлЮ брпурЬумбфб

УелЯдб 24 - All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides.
УелЯдб 114 - In obtuse-angled triangles, if a perpendicular be drawn from either of the acute angles to the opposite side produced, the square on the side subtending the obtuse angle is greater than the squares on the sides containing the obtuse angle, by twice the rectangle contained by the side...
УелЯдб xiv - A circle is a plane figure contained by one line, which is called the circumference, and is such, that all straight lines drawn from a certain point within the figure to the circumference are equal to one another : 16. And this point is called the centre of the circle.
УелЯдб 13 - The difference between any two sides of a triangle is less than the third side.
УелЯдб 111 - AFC. (in. 21.) Hence in the triangles ADE, AFC, there are two angles in the one respectively equal to two angles in the other, consequently, the third angle CAF is equal to the third angle DAB ; therefore the arc DB is equal to the arc CF, (in.
УелЯдб 89 - ... the centre of the circle shall be in that line. Let the straight line DE touch the circle ABC in C, and from C let CA be drawn at right angles to DE ; the centre of the circle is in CA.
УелЯдб 70 - EQUAL circles are those of which the diameters are equal, or from the centres of which the straight lines to the circumferences are equal. ' This is not a definition, but a theorem, the truth of ' which is evident; for, if the circles be applied to one ' another, so that their centres coincide, the circles ' must likewise coincide, since the straight lines from
УелЯдб 34 - To describe a parallelogram equal to a given rectilineal figure, and having an angle equal to a given rectilineal angle.
УелЯдб 22 - If a straight line meet two straight lines, so as to make the two interior angles on the same side of it taken together less than two right angles...