Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

the triangle ABC, prove that the rectangle contained by BC and BD, is equal to the rectangle contained by BA and BE.

112. The lines which bisect the vertical angles of all triangles on the same base and with the same vertical angle, all intersect in one point. 113. Of all triangles on the same base and between the same parallels, the isosceles has the greatest vertical angle.

114. It is required within an isosceles triangle to find a point such, that its distance from one of the equal angles may be double its distance from the vertical angle.

115. To find within an acute-angled triangle, a point from which, if straight lines be drawn to the three angles of the triangle, they shall make equal angles with each other.

116. A flag-staff of a given height is erected on a tower whose height is also given: at what point on the horizon will the flag-staff appear under the greatest possible angle?

117. A ladder is gradually raised against a wall; find the locus of its middle point.

118. The triangle formed by the chord of a circle (produced or not), the tangent at its extremity, and any line perpendicular to the diameter through its other extremity, will be isosceles.

119. AD, BE are perpendiculars from the angles A and B on the opposite sides of a triangle, BF perpendicular to ED or ED produced; shew that the angle FBD = EBA.

XI.

120. If three equal circles have a common point of intersection, prove that a straight line joining any two of the points of intersection, will be perpendicular to the straight line joining the other two points

of intersection.

121. Two equal circles cut one another, and a third circle touches each of these two equal circles externally; the straight line which joins the points of section will, if produced, pass through the center of the third circle.

122. A number of circles touch each other at the same point, and a straight line is drawn from it cutting them: the straight lines joining each point of intersection with the center of the circle will be all parallel.

123. If three circles intersect one another, two and two, the three chords joining the points of intersection shall all pass through one point.

124. If three circles touch each other externally, and the three common tangents be drawn, these tangents shall intersect in a point equidistant from the points of contact of the circles.

125. If two equal circles intersect one another in A and B, and from one of the points of intersection as a center, a circle be described which shall cut both of the equal circles, then will the other point of intersection, and the two points in which the third circle cuts the other two on the same side of AB, be in the same straight line.

XII.

126. Given the base, the vertical angle, and the difference of the sides, to construct the triangle.

127. Describe a triangle, having given the vertical angle, and the segments of the base made by a line bisecting the vertical angle. 128. Given the perpendicular height, the vertical angle and the sum of the sides, to construct the triangle.

129. Construct a triangle in which the vertical angle and the difference of the two angles at the base shall be respectively equal to two given angles, and whose base shall be equal to a given straight line.

130. Given the vertical angle, the difference of the two sides containing it, and the difference of the segments of the base made by a perpendicular from the vertex; construct the triangle.

131. Given the vertical angle, and the lengths of two lines drawn from the extremities of the base to the points of bisection of the sides, to construct the triangle.

132. Given the base, and vertical angle, to find the triangle whose area is a maximum.

133. Given the base, the altitude, and the sum of the two remaining sides; construct the triangle.

134. Describe a triangle of given base, area, and vertical angle. 135. Given the base and vertical angle of a triangle, find the locus of the intersection of perpendiculars to the sides from the extremities of the base.

XIII.

136. Shew that the perpendiculars to the sides of a quadrilateral inscribed in a circle from their middle points intersect in a fixed point. 137. The lines bisecting any angle of a quadrilateral figure inscribed in a circle, and the opposite exterior angle, meet in the circumference of the circle.

138. If two opposite sides of a quadrilateral figure inscribed in a circle be equal, prove that the other two are parallel.

139. The angles subtended at the center of a circle by any two opposite sides of a quadrilateral figure circumscribed about it, are together equal to two right angles.

140. Four circles are described so that each may touch internally three of the sides of a quadrilateral figure, or one side and the adjacent sides produced; shew that the centers of these four circles will all lie in the circumference of a circle.

141. One side of a trapezium capable of being inscribed in a given circle is given, the sum of the remaining three sides is given; and also one of the angles opposite to the given side: construct it.

142. If the sides of a quadrilateral figure inscribed in a circle be produced to meet, and from each of the points of intersection a straight line be drawn, touching the circle, the squares on these tangents are together equal to the square on the straight line joining the points of intersection.

143. If a quadrilateral figure be described about a circle, the sums of the opposite sides are equal; and each sum equal to half the perimeter of the figure.

144. A quadrilateral ABCD is inscribed in a circle, BC and DC

are produced to meet AD and AB produced in E and F. The angles ABC and ADC are together equal to AFC, AEB, and twice the angle BAC.

145. If the hypotenuse AB of a right-angled triangle ABC be bisected in D, and EDF drawn perpendicular to AB, and DE, DF cut off each equal to DA, and CE, CF joined, prove that the last two lines will bisect the angle at Cand its supplement respectively.

146. ABCD is a quadrilateral figure inscribed in a circle. Through its angular points tangents are drawn so as to form another quadrilateral figure FBLCHDEA circumscribed about the circle. Find the relation which exists between the angles of the exterior and the angles of the interior figure.

147. The angle contained by the tangents, drawn at the extremities of any chord in a circle is equal to the difference of the angles in segments made by the chord: and also equal to twice the angle contained by the same chord and a diameter drawn from either of its extremities.

148. If ABCD be a quadrilateral figure, and the lines AB, AC, AD be equal, shew that the angle BAĎ is double of CBD and CDB together.

149. Shew that the four lines which bisect the interior angles of a quadrilateral figure, form by their intersections, a quadrilateral figure which can be inscribed in a circle.

150. In a quadrilateral figure ABCD is inscribed a second quadrilateral by joining the middle points of its adjacent sides; a third is similarly inscribed in the second, and so on. Shew that each of the series of quadrilaterals will be capable of being inscribed in a circle if the first three are so. Shew also that two at least of the opposite sides of ABCD must be equal, and that the two squares upon these sides are together equal to the sum of the squares upon the

other two.

XIV.

151. If from any point in the diameter of a semicircle, there be drawn two straight lines to the circumference, one to the bisection of the circumference, the other at right angles to the diameter, the squares upon these two lines are together double of the square upon the semi-diameter.

152. If from any point in the diameter of a circle, straight lines be drawn to the extremities of a parallel chord, the squares on these lines are together equal to the squares on the segments into which the diameter is divided.

153. From a given point without a circle, at a distance from the circumference of the circle not greater than its diameter, draw a straight line to the concave circumference which shall be bisected by the convex circumference.

154. If any two chords be drawn in a circle perpendicular to each other, the sum of their squares is equal to twice the square on the diameter diminished by four times the square on the line joining the center with their point of intersection.

155. Two points are taken in the diameter of a circle at any equal distances from the center; through one of these draw any chord, and join its extremities and the other point. The triangle so formed has the sum of the squares of its sides invariable.

156. If chords drawn from any fixed point in the circumference of a circle, be cut by another chord which is parallel to the tangent at that point, the rectangle contained by each chord, and the part of it intercepted between the given point and the given chord, is constant. 157. If AB be a chord of a circle inclined by half a right angle to the tangent at A, and AC, AD be any two chords equally inclined to AB, AC2 + AD2 = 2. AB2.

158.

A chord POQ cuts the diameter of a circle in Q, in an angle equal to half a right angle; PO2 + OQ2 = 2 (rad.)2.

159. Let ACDB be a semicircle whose diameter is AB; and AD, BC any two chords intersecting in P; prove that

ABDA. AP + CB.BP.

160. If ABDC be any parallelogram, and if a circle be described passing through the point A, and cutting the sides AB, AC, and the diagonal AD, in the points F, G, H respectively, shew that

AB.AF+AC.AG=AD.AH.

161. Produce a given straight line, so that the rectangle under the given line, and the whole line produced, may equal the square of the part produced.

162. If A be a point within a circle, BC the diameter, and through A, AD be drawn perpendicular to the diameter, and BAE meeting the circumference in E, then BA.BE-BC.BD.

163. The diameter ACD of a circle, whose center is C, is produced to P, determine a point F in the line AP such that the rectangle PF.PC may be equal to the rectangle PD. PA.

164. To produce a given straight line, so that the rectangle contained by the whole line thus produced, and the part of it produced, shall be equal to a given square.

165. Two straight lines stand at right angles to each other, one of which passes through the center of a given circle, and from any point in the other, tangents are drawn to the circle. Prove that the chord joining the points of contact cuts the first line in the same point, whatever be the point in the second from which the tangents are drawn.

166. A, B, C, D, are four points in order in a straight line, find a point E between B and C, such that AE. EB=ED.EC, by a geometrical construction.

167. If any two circles touch each other in the point O, and lines be drawn through O at right angles to each other, the one line cutting the circles in P, P, the other in Q, Q'; and if the line joining the centers of the circles cut them in A, A'; then

PP2 + Q'Q2 = A'A3,

BOOK IV.

DEFINITIONS.

I.

A RECTILINEAL figure is said to be inscribed in another rectilineal figure, when all the angular points of the inscribed figure are upon the sides of the figure in which it is inscribed, each upon each.

II.

In like manner, a figure is said to be described about another figure, when all the sides of the circumscribed figure pass through the angular points of the figure about which it is described, each through each.

III.

A rectilineal figure is said to be inscribed in a circle, when all the angular points of the inscribed figure are upon the circumference of the circle.

IV.

A rectilineal figure is said to be described about a circle, when each side of the circumscribed figure touches the circumference of the circle

V.

In like manner, a circle is said to be inscribed in a rectilineal figure, when the circumference of the circle touches each side of the figure.

VI.

A circle is said to be described about a rectilineal figure, when the circumference of the circle passes through all the angular points of the figure about which it is described.

« ΠροηγούμενηΣυνέχεια »