First principles of Euclid: an introduction to the study of the first book of Euclid's Elements1880 |
Αναζήτηση στο βιβλίο
Αποτελέσματα 1 - 5 από τα 30.
Σελίδα 24
... Join FK , KG . The triangle shall have its sides FK equal to A ; FG equal to B ; G K equal to C. We are required to prove three things : - 1. That F K is equal to A. 2. That F G is equal to B. 3. That G K is equal to C. Proof ( with ...
... Join FK , KG . The triangle shall have its sides FK equal to A ; FG equal to B ; G K equal to C. We are required to prove three things : - 1. That F K is equal to A. 2. That F G is equal to B. 3. That G K is equal to C. Proof ( with ...
Σελίδα 30
... Join DE . ( b ) On DE , on the side remote from A , describe the equilateral triangle DFE . ( Euc . I. I shows how to do this . ) Join A F The line AF shall bisect the angle BA C. B A D If the angle B A C is bisected by AF ; the angle ...
... Join DE . ( b ) On DE , on the side remote from A , describe the equilateral triangle DFE . ( Euc . I. I shows how to do this . ) Join A F The line AF shall bisect the angle BA C. B A D If the angle B A C is bisected by AF ; the angle ...
Σελίδα 34
... join A B. ) C ¶ B DEFINITION OF RIGHT ANGLES . Euc . Def . 10. ) — When a straight line , standing on another straight line , makes the adjacent angles equal to one another , each of the angles is called a right angle . And the straight ...
... join A B. ) C ¶ B DEFINITION OF RIGHT ANGLES . Euc . Def . 10. ) — When a straight line , standing on another straight line , makes the adjacent angles equal to one another , each of the angles is called a right angle . And the straight ...
Σελίδα 36
... equilateral triangle DFE . ( Euc . I. 1. ) ( d ) Join FC . The straight line FC drawn from the given V point C , shall be at right angles to the given straight line A B. If FC be at right angles to A B , 36 First Principles of Euclid .
... equilateral triangle DFE . ( Euc . I. 1. ) ( d ) Join FC . The straight line FC drawn from the given V point C , shall be at right angles to the given straight line A B. If FC be at right angles to A B , 36 First Principles of Euclid .
Σελίδα 38
... . ) ( a ) Bisect FG ( Euc . I. 10 shows how ) , and call the point of bisection H. Join CH . The straight line CH drawn from the given point C ' is perpendicular to the given straight line 38 First Principles of Euclid .
... . ) ( a ) Bisect FG ( Euc . I. 10 shows how ) , and call the point of bisection H. Join CH . The straight line CH drawn from the given point C ' is perpendicular to the given straight line 38 First Principles of Euclid .
Συχνά εμφανιζόμενοι όροι και φράσεις
1st conclusion 2nd Syllogism A B equal ABC is equal adjacent angles alternate angle angle A CD angle ABC angle B A C angle BAC angle contained angle DFE angle EDF angle GHD angles BGH angles equal Axiom 2a Axiom 9 base B C bisected CD is greater coincide Construction definition diameter enunciations of Euc equal angles equal to A B equal to angle equal to CD equal to side equilateral triangle EXERCISES.-I exterior angle figure given line given point given straight line greater than angle included angle interior opposite angle isosceles triangle Join Let us suppose line A B line CD major premiss parallel to CD parallelogram Particular Enunciation PROBLEM Euclid produced proposition prove that angle remaining angle Required right angles side A C sides equal square THEOREM Euclid triangle ABC
Δημοφιλή αποσπάσματα
Σελίδα 83 - If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side, viz. either the sides adjacent to the equal...
Σελίδα 18 - A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference, are equal to one another.
Σελίδα 66 - If, from the ends of the side of a triangle, there be drawn two straight lines to a point within the triangle, these shall be less than, the other two sides of the triangle, but shall contain a greater angle. Let...
Σελίδα 34 - When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is called a Right Angle; and the straight line which stands on the other is called a Perpendicular to it.
Σελίδα 94 - Upon the same base, and on the same side of it, there cannot be two triangles that have their sides which are terminated in one extremity of' the base, equal to one another, and likewise those which are terminated in the other extremity.
Σελίδα 88 - THE angles at the base of an isosceles triangle are equal to one another : and, if the equal sides be produced, the angles upon the other side of the base shall be equal.
Σελίδα 104 - If a straight line falling upon two other straight lines, make the exterior angle equal to the interior and opposite upon the same side of the line ; or make the interior angles upon the same side together equal to two right angles ; the two straight lines shall be parallel to one another.
Σελίδα 140 - If the square described upon one of the sides of a triangle, be equal to the squares described upon the other two sides of it ; the angle contained by these two sides is a right angle.
Σελίδα 51 - If, at a point in a straight line, two other straight lines, upon the opposite sides of it, make the adjacent angles together equal to two right angles, these two straight lines shall be in one and the same straight line.
Σελίδα 132 - To a given straight line to apply a parallelogram, which shall be equal to a given triangle, and have one of its angles equal to a given rectilineal angle.