First principles of Euclid: an introduction to the study of the first book of Euclid's Elements1880 |
Αναζήτηση στο βιβλίο
Αποτελέσματα 1 - 5 από τα 38.
Σελίδα 13
T S. Taylor. Major Premiss . Minor Premiss . The line CD stand- ing on AB makes the angle CDA equal to the angle CDB . Conclusion . .. CD is at right angles to AB . Major Premiss . A D B A B F D Minor Premiss . A B and CD are E each ...
T S. Taylor. Major Premiss . Minor Premiss . The line CD stand- ing on AB makes the angle CDA equal to the angle CDB . Conclusion . .. CD is at right angles to AB . Major Premiss . A D B A B F D Minor Premiss . A B and CD are E each ...
Σελίδα 32
... angle A CB by the straight line CD , meet- ing A B at D. ( Euc . I. 9 shows how to do this . ) A D Then the line AB shall be bisected at the point D. If A B be bisected at D , then we have to prove that A D is equal to D B. Proof ( with ...
... angle A CB by the straight line CD , meet- ing A B at D. ( Euc . I. 9 shows how to do this . ) A D Then the line AB shall be bisected at the point D. If A B be bisected at D , then we have to prove that A D is equal to D B. Proof ( with ...
Σελίδα 33
... angle contained by them . BC , CD are two sides of triangle CBD , and BCD is the angle contained by them . Ist Syllogism . CA is equal to CB ( by Construction a ) ; add CD to each of these . ( c ) Then A C , CD are equal to BC , CD ...
... angle contained by them . BC , CD are two sides of triangle CBD , and BCD is the angle contained by them . Ist Syllogism . CA is equal to CB ( by Construction a ) ; add CD to each of these . ( c ) Then A C , CD are equal to BC , CD ...
Σελίδα 34
... angle at the vertex.1 ) II . If straight lines are drawn from the points A and B to any point in the line CD , those lines are found to be equal , and the angle thus made is found to be bisected by the line CD . Prove that A and B are ...
... angle at the vertex.1 ) II . If straight lines are drawn from the points A and B to any point in the line CD , those lines are found to be equal , and the angle thus made is found to be bisected by the line CD . Prove that A and B are ...
Σελίδα 35
... CD is said to be at right angles to A B. If drawn from C , the line CD is said to be perpendicular to A B. PROBLEM ( Euclid I. 11 ) . Repeat . The definition of a right angle , and of an equilateral triangle , and Axiom II . ( Euc . I ...
... CD is said to be at right angles to A B. If drawn from C , the line CD is said to be perpendicular to A B. PROBLEM ( Euclid I. 11 ) . Repeat . The definition of a right angle , and of an equilateral triangle , and Axiom II . ( Euc . I ...
Συχνά εμφανιζόμενοι όροι και φράσεις
1st conclusion 2nd Syllogism A B equal ABC is equal adjacent angles alternate angle angle A CD angle ABC angle B A C angle BAC angle contained angle DFE angle EDF angle GHD angles BGH angles equal Axiom 2a Axiom 9 base B C bisected CD is greater coincide Construction definition diameter enunciations of Euc equal angles equal to A B equal to angle equal to CD equal to side equilateral triangle EXERCISES.-I exterior angle figure given line given point given straight line greater than angle included angle interior opposite angle isosceles triangle Join Let us suppose line A B line CD major premiss parallel to CD parallelogram Particular Enunciation PROBLEM Euclid produced proposition prove that angle remaining angle Required right angles side A C sides equal square THEOREM Euclid triangle ABC
Δημοφιλή αποσπάσματα
Σελίδα 83 - If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side, viz. either the sides adjacent to the equal...
Σελίδα 18 - A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference, are equal to one another.
Σελίδα 66 - If, from the ends of the side of a triangle, there be drawn two straight lines to a point within the triangle, these shall be less than, the other two sides of the triangle, but shall contain a greater angle. Let...
Σελίδα 34 - When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is called a Right Angle; and the straight line which stands on the other is called a Perpendicular to it.
Σελίδα 94 - Upon the same base, and on the same side of it, there cannot be two triangles that have their sides which are terminated in one extremity of' the base, equal to one another, and likewise those which are terminated in the other extremity.
Σελίδα 88 - THE angles at the base of an isosceles triangle are equal to one another : and, if the equal sides be produced, the angles upon the other side of the base shall be equal.
Σελίδα 104 - If a straight line falling upon two other straight lines, make the exterior angle equal to the interior and opposite upon the same side of the line ; or make the interior angles upon the same side together equal to two right angles ; the two straight lines shall be parallel to one another.
Σελίδα 140 - If the square described upon one of the sides of a triangle, be equal to the squares described upon the other two sides of it ; the angle contained by these two sides is a right angle.
Σελίδα 51 - If, at a point in a straight line, two other straight lines, upon the opposite sides of it, make the adjacent angles together equal to two right angles, these two straight lines shall be in one and the same straight line.
Σελίδα 132 - To a given straight line to apply a parallelogram, which shall be equal to a given triangle, and have one of its angles equal to a given rectilineal angle.