Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

ther proved by the consideration of evanescent triangles, by the processes of the Differential Calculus, or in any other way.

The ancients did not expressly introduce this conception of a Limit into their mathematical reasonings; although in the application of what is termed the Method of Exhaustions, (in which they show how to exhaust the difference between a polygon and a curve, or the like,) they were in fact proceeding upon an obscure apprehension of principles equivalent to those of the Method of Limits. Yet the necessary fundamental principle not having, in their time, been clearly developed, their reasonings were both needlessly intricate and imperfectly satisfactory. Moreover they were led to put in the place of axioms, assumptions which were by no means self-evident; as when Archimedes assumed, for the basis of his measure of the circumference of the circle, the proposition that a circular arch is necessarily less than two lines which inclose it, joining its extremities. The reasonings of the older mathematicians, which professed to proceed upon such assumptions, led to true results in reality, only because they were guided by a latent reference to the limiting case of such assumptions. And this latent employment of the conception of a Limit, reappeared in various forms during the early period of modern mathematics; as for example, in the Method of Indivisibles of Cavalleri, and the Characteristic Triangle of Barrow; till at last, Newton distinctly referred such reasonings to the conception of a Limit, and established the fundamental principles and processes which that conception introduces, with a distinctness and exactness which required little improvement to make it as unimpeachable as the demonstrations of geometry. And when such processes as Newton thus deduced from the conception of a Limit are represented by means of general

algebraical symbols instead of geometrical diagrams, we have then before us the Method of Fluxions, or the Differential Calculus; a mode of treating mathematical problems justly considered as the principal weapon by which the splendid triumphs of modern mathematics

have been achieved.

2. The Use of General Symbols.-The employment of algebraical symbols, of which we have just spoken, has been another of the main instruments to which the successes of modern mathematics are owing. And here again the processes by which we obtain our results depend for their evidence upon a fundamental conception, -the conception of arbitrary symbols as the Signs of quantity and its relations; and upon a corresponding axiom, that "The interpretation of such symbols must be perfectly general." In this case, as in the last, it was only by degrees that mathematicians were led to a just apprehension of the grounds of their reasoning. For symbols were at first used only to represent numbers considered with regard to their numerical properties; and thus the science of Algebra was formed. But it was found, even in cases belonging to common algebra, that the symbols often admitted of an interpretation which went beyond the limits of the problem, and which yet was not unmeaning, since it pointed out a question closely analogous to the question proposed. This was the case, for example, when the answer was a negative quantity; for when Descartes had introduced the mode of representing curves by means of algebraical relations among the symbols of the co-ordinates, or distances of each of their points from fixed lines, it was found that negative quantities must be dealt with as not less truly significant than positive ones. And as the researches of mathematicians proceeded, other cases also were found, in which the symbols, although destitute of meaning according to

the original conventions of their institution, still pointed out truths which could be verified in other ways; as in the cases in which what are called impossible quantities occur. Such processes may usually be confirmed upon other principles, and the truth in question may be established by means of a demonstration in which no such seeeming fallacies defeat the reasoning. But it has also been shown in many such cases, cases, that the process in which some of the steps appear to be without real meaning, does in fact involve a valid proof of the proposition. And what we have here to remark is, that this is not true accidentally or partially only, but that the results of systematic symbolical reasoning must always express general truths, by their nature, and do not, for their justification, require each of the steps of the process to represent some definite operation upon quantity. The absolute universality of the interpretation of symbols is the fundamental principle of their use. This has been shown very ably by Dr. Peacock in his Algebra. He has there illustrated, in a variety of ways, this principle: that "If general symbols express an identity when they are supposed to be of any special nature, they must also express an identity when they are general in their nature." And thus, this universality of symbols is a principle in addition to those we have already noticed; and is a principle of the greatest importance in the formation of mathematical science, according to the wide generality which such science has in modern times assumed.

3. Connexion of Symbols and Analysis. Since in our symbolical reasoning our symbols thus reason for us, we do not necessarily here, as in geometrical reasoning, go on adding carefully one known truth to another, till we reach the desired result. On the contrary, if we have a theorem to prove or a problem to solve which can be

brought under the domain of our symbols, we may at once state the given but unproved truth, or the given combination of unknown quantities, in its symbolical form. After this first process, we may then proceed to trace, by means of our symbols, what other truth is involved in the one thus stated, or what the unknown symbols must signify; resolving step by step the symbolical assertion with which we began, into others more fitted for our purpose. The former process is a kind of synthesis, the latter is termed analysis. And although symbolical reasoning does not necessarily imply such analysis; yet the connexion is so familiar, that the term analysis is frequently used to designate symbolical reasoning.

CHAPTER XIII.

THE DOCTRINE OF MOTION.

1. Pure Mechanism.-THE doctrine of Motion, of which we have here to speak, is that in which motion is considered quite independently of its cause, force; for all consideration of force belongs to a class of ideas entirely different from those with which we are here concerned. In this view it may be termed the pure doctrine of motion, since it has to do solely with space and time, which are the subjects of pure mathematics. (See C. I. of this Book.) Although the doctrine of motion in connexion with force, which is the subject of mechanics, is by far the most important form in which the consideration of motion enters into the formation of our sciences, the Pure Doctrine of Motion, which treats of space, time, and velocity, might be followed out so as to give rise to a very considerable and curious body of science. Such a science is the science

of Mechanism, independent of force, and considered as the solution of a problem which may be thus enunciated: "To communicate any given motion from a first mover to a given body." The science which should have for its object to solve all the various cases into which this problem would ramify, might be termed Pure Mechanism, in contradistinction to Mechanics Proper, or Machinery, in which Force is taken into consideration. The greater part of the machines which have been constructed for use in manufactures have been practical solutions of some of the cases of this problem. We have also important contributions to such a science in the works of mathematicians; for example, the various investigations and demonstrations which have been published respecting the form of the Teeth of Wheels, and Mr. Babbage's memoir on the Language of Machinery. There are also several works which contain collections of the mechanical contrivances which have been invented for the purpose of transmitting and modifying motion, and these works may be considered as treatises on the science of Pure Mechanism. But this science has not yet been reduced to the systematic simplicity which is desirable, nor indeed generally recognized as a separate science. It has been confounded, under the common name of Mechanics, with the other science, Mechanics Proper, or Machinery, which considers the effect of force transmitted by mechanism from one part of a material combination to another. For example, the Mechanical Powers, as they are usually termed, (the Lever, the Wheel and Axle, the Inclined Plane, the Wedge, and the Screw,) have almost always been treated with reference to the relation between the Power and the Weight, and not primarily as a mode of changing the velocity and kind

On a Method of expressing by Signs the Action of Machinery. Phil. Trans., 1826, p. 250.

« ΠροηγούμενηΣυνέχεια »