Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

82

BOOK II.

THE PHILOSOPHY OF THE PURE

SCIENCES.

CHAPTER I.

OF THE PURE SCIENCES.

1. ALL external objects and events which we can contemplate are viewed as having relations of Space, Time, and Number; and are subject to the general conditions which these Ideas impose, as well as to the particular laws which belong to each class of objects and occurrences. The special laws of nature, considered under the various aspects which constitute the different sciences, are obtained by a mixed reference to experience and to the fundamental ideas of each science. But besides the sciences thus formed by the aid of special experience, the conditions which flow from those more comprehensive ideas first mentioned, Space, Time, and Number, constitute a body of science, applicable to objects and changes of all kinds, and deduced without recurrence being had to any observation in particular. These sciences, thus unfolded out of ideas alone, unmixed with any reference to the phenomena of matter, are hence termed Pure Sciences. The principal sciences of this class are Geometry, Theoretical Arithmetic, and Algebra considered in its most general sense, as the investigation of the relations of space and number by means of general symbols.

2. These Pure Sciences were not included in our survey of the history of the sciences, because they are not inductive sciences. Their progress has not consisted in collecting laws from phenomena, true theories from observed facts, and more general from more limited laws; but in tracing the consequences of the ideas themselves, and in detecting the most general and intimate analogies and connexions which prevail among such conceptions as are derivable from the ideas. These sciences have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming here a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects.

3. The universality of the truths, and the rigour of the demonstrations of these pure sciences, attracted attention in the earliest times; and it was perceived that they offered an exercise and a discipline of the intellectual faculties, in a form peculiarly free from admixture of extraneous elements. They were strenuously cultivated by the Greeks, both with a view to such a discipline, and from the love of speculative truth which prevailed among that people: and the name mathematics, by which they are designated, indicates this their character of disciplinal studies.

4. As has already been said, the ideas which these sciences involve extend to all the objects and changes which we observe in the external world; and hence the consideration of mathematical relations forms a large portion of many of the sciences which treat of the phenomena and laws of external nature, as Astronomy, Optics, and Mechanics. Such sciences are hence often termed Mixed Mathematics, the relations of space and number being, in these branches of knowledge, combined with principles collected from special observation;

while Geometry, Algebra, and the like subjects, which involve no result of experience, are called Pure Mathematics.

5. Space, time, and number, may be conceived as forms by which the knowledge derived from our sensations is moulded, and which are independent of the dif ferences in the matter of our knowledge, arising from the sensations themselves. Hence the sciences which have these ideas for their subject may be termed Formal Sciences. In this point of view, they are distinguished from sciences in which, besides these mere formal laws by which appearances are corrected, we endeavour to apply to the phenomena the idea of cause, or some of the other ideas which penetrate further into the principles of nature. We have thus, in the History, distinguished Formal Astronomy and Formal Optics from Physical Astronomy and Physical Optics.

We now proceed to our examination of the Ideas which constitute the foundation of these formal or pure mathematical sciences, beginning with the Idea of Space.

CHAPTER II.

OF THE IDEA OF SPACE.

1. By speaking of space as an Idea, I intend to imply, as has already been stated, that the apprehension of objects as existing in space, and of the relations of position, &c., prevailing among them, is not a consequence of experience, but a result of a peculiar constitution and activity of the mind, which is independent of all experience in its origin, though constantly combined with experience in its exercise.

That the idea of space is thus independent of experience, has already been pointed out in speaking of ideas

in general: but it may be useful to illustrate the doctrine further in this particular case.

I assert, then, that space is not a notion obtained by experience. Experience gives us information concerning things without us: but our apprehending them as without us, takes for granted their existence in space. Experience acquaints us what are the form, position, magnitude of particular objects: but that they have form, position, magnitude, presupposes that they are in space. We cannot derive from appearances, by the way of observation, the habit of representing things to ourselves as in space; for no single act of observation is possible any otherwise than by beginning with such a representation, and conceiving objects as already existing in space.

2. That our mode of representing space to ourselves is not derived from experience, is clear also from this: -that through this mode of representation we arrive at propositions which are rigorously universal and necessary. Propositions of such a kind could not possibly be obtained from experience; for experience can only teach us by a limited number of examples, and therefore can never securely establish a universal proposition: and again, experience can only inform us that anything is so, and can never prove that it must be so. That two sides of a triangle are greater than the third is a universal and necessary geometrical truth: it is true of all triangles; it is true in such a way that the contrary cannot be conceived. Experience could not prove such a proposition. And experience has not proved it; for perhaps no man ever made the trial as a means of removing doubts: and no trial could, in fact, add in the smallest degree to the certainty of this truth. To seek for proof of geometrical propositions by an appeal to observation proves nothing in reality, except that the person who has recourse to such grounds has no due apprehension

of the nature of geometrical demonstration. We have heard of persons who convinced themselves by measurement that the geometrical rule respecting the squares on the sides of a right-angled triangle was true: but these were persons whose minds had been engrossed by practical habits, and in whom the speculative developement of the idea of space had been stifled by other employments. The practical trial of the rule may illustrate, but cannot prove it. The rule will of course be confirmed by such trial, because what is true in general is true in particular: but the rule cannot be proved from any number of trials, for no accumulation of particular cases makes up a universal case. To all persons who can see the force of any proof, the geometrical rule above referred to is as evident, and its evidence as independent of experience, as the assertion that sixteen and nine make twenty-five. At the same time, the truth of the geometrical rule is quite independent of numerical truths, and results from the relations of space alone. This could not be if our apprehension of the relations of space were the fruit of experience: for experience has no element from which such truth and such proof could arise.

3. Thus the existence of necessary truths, such as those of geometry, proves that the idea of space from which they flow, is not derived from experience. Such truths are inconceivable on the supposition of their being collected from observation; for the impressions of sense include no evidence of necessity. But we can readily understand the necessary character of such truths, if we conceive that there are certain necessary conditions under which alone the mind receives the impressions of sense. Since these conditions reside in the constitution of the mind, and apply to every perception of an object to which the mind can attain, we easily see that their rules must include, not only all that has been, but all that can

« ΠροηγούμενηΣυνέχεια »