### ‘ι κίμε οι ςώόστερ -”ΐμτανγ ξώιτιξόρ

Ρεμ εμτοπΏσαλε ξώιτιξίρ στιρ σθμόηειρ τοποηεσΏερ.

### –εώιεςϋλεμα

 ≈μϋτγτα 1 1 ≈μϋτγτα 2 5 ≈μϋτγτα 3 3 ≈μϋτγτα 4 7 ≈μϋτγτα 5 3 ≈μϋτγτα 6 3 ≈μϋτγτα 7 1 ≈μϋτγτα 8 1
 ≈μϋτγτα 10 4 ≈μϋτγτα 11 ≈μϋτγτα 12 1 ≈μϋτγτα 13 3 ≈μϋτγτα 14 ≈μϋτγτα 15 1 ≈μϋτγτα 16 1 ≈μϋτγτα 17 1

### Ργλοωικό αποσπήσλατα

”εκΏδα 2 - IF a straight line fall upon two parallel straight lines, it makes the alternate angles equal to one another; and the exterior angle equal to the interior and opposite upon the same side; and likewise the two interior angles upon the same side together equal to two right angles...
”εκΏδα 6 - If two triangles have two sides of the one equal to two sides of the...
”εκΏδα 8 - ... me, and perceiving that I was weary and dejected, inquired into my situation, which I briefly explained to her; whereupon, with looks of great compassion, she took up my saddle and bridle, and told me to follow her.
”εκΏδα 13 - To divide a given straight line into two parts, so that the rectangle contained by the whole, and one of the parts, may be equal to the square of the other part.
”εκΏδα 3 - Parallelograms upon the same base and between the same parallels, are equal to one another.
”εκΏδα 3 - Elle a deux grands môles semblables à deux bras, qui s'avancent dans la mer et qui embrassent un vaste port où les vents ne peuvent entrer. Dans ce port on voit comme une forêt de mâts de navires ; et ces navires sont si nombreux, qu'à peine peut-on découvrir la mer qui les porte.
”εκΏδα 2 - IF a straight line be divided into two equal, and also into two unequal parts ; the squares of the two unequal parts are together double of the square of half the line, and of the square of the line between the points of section.
”εκΏδα 4 - Therefore, in obtuse-angled triangles, &c. QED PROP. XIII. THEOREM. In every triangle, the square of the side subtending either of the acute angles is less than the squares of the sides containing that angle, by twice the rectangle contained by either of...
”εκΏδα 1 - If two triangles have one angle of the one equal to one angle of the other and the sides about these equal angles proportional, the triangles are similar.