Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

XIII. A CIRCLE is a plane figure contained by one line, which is called the CIRCUMFERENCE, and is such, that all straight lines drawn to the circumference from a certain point (called the CENTRE) within the figure are equal to one another.

XIV. Any straight line drawn from the centre of a circle to the circumference is called a RADIUS.

XV. A DIAMETER of a circle is a straight line drawn through the centre and terminated both ways by the circumference.

B

D

a

Thus, in the diagram, 0 is the centre of the circle ABCD, 0A, OB, OC, OD are Radii of the circle, and the straight line AOD is a Diameter. Hence the radius of a circle is half the diameter.

XVI. A SEMICIRCLE is the figure contained by a diameter and the part of the circumference cut off by the diameter.

XVII. RECTILINEAR figures are those which are contained by straight lines.

The PERIMETER (or Periphery) of a rectilinear figure is the sum of its sides.

XVIII. A TRIANGLE is a plane figure contained by three straight lines.

XIX. A QUADRILATERAL is a plane figure contained by four straight lines.

XX. A POLYGON is a plane figure contained by more than four straight lines.

When a polygon has all its sides equal and all its angles equal it is called a regular polygon.

[ocr errors][ocr errors][ocr errors][ocr errors][ocr errors][ocr errors][ocr errors][ocr errors][ocr errors][ocr errors][ocr errors][ocr errors]
[ocr errors]

POSTULATES. Let it be granted

I. That a straight line may be drawn from any one point to any other point.

II. That a terminated straight line may be produced to any length in a straight line.

III. That a circle may be described from any centre at any distance from that centre.

IV. That all right angles are equal to one another.
V. That two straight lines cannot enclose a space.

VI. That if a straight line meet two other straight lines, so as to make the two interior angles on the same side of it, taken together, less than two right angles, these straight lines being continually produced shall at length meet upon that side, on which are the angles, which are together less than two right angles.

The word rendered * Postulates” is in the original airhuara, "requests.”

In the first three Postulates Euclid states the use, under certain restrictions, which he desires to make of certain instruments for the construction of lines and circles.

In Post. I. and 11. he asks for the use of the straight ruler, wherewith to draw straight lines. The restriction is, that the ruler is not supposed to be marked with divisions so as to measure lines.

In Post. III. he asks for the use of a pair of compasses, wherewith to describe a circle, whose centre is at one extremity of a given line, and whose circumference passes through the other extremity of that line. The restriction is, that the compasses are not supposed to be capable of conveying distances.

Post. IV. and v. refer to simple geometrical facts, which Euclid desires to take for granted.

Post. VI. may, as we shall shew hereafter, be deduced from a

more simple Postulate. The student must defer the consideration of this postulate, till he has reached the 17th Proposition of Book I.

Euclid next enumerates, as statements of fact, nine Axioms

XXI. An EQUILATERAL Triangle is one which has all its sides equal.

XXII. An ISOSCELES Triangle is one which has two sides equal.

The third side is often called the base of the triangle.

The term base is applied to any one of the sides of a triangle to distinguish it from the other two, especially when they have been previously mentioned.

XXIII. A RIGHT-ANULED

Triangle is one in which one of the angles is a right angle.

The side subtending, that is, which is opposite the right angle, is called the Hypotenuse.

XXIV. An OBTUSE-ANGLED Triangle is one in which one of the angles is obtuse.

It will be shewn hereafter that a triangle can have only one of its angles either equal to, or greater than, a right angle.

XXV. An ACUTE-ANGLED Triangle is one in which ALL the angles are acute.

XXVI. PARALLEL STRAIGHT LINES are such as, being in the same plane, never meet when continually produced in both directions.

Euclid proceeds to put forward Six Postulates, or Requests, that he may be allowed to make certain assumptions on the construction of figures and the properties of geometrical mag. itudes.

POSTULATES. Let it be granted

I. That a straight line may be drawn from any one point to any other point.

II. That a terminated straight line may be produced to any length in a straight line.

III. That a circle may be described from any centre at any distance from that centre.

IV. That all right angles are equal to one another.
V. That two straight lines cannot enclose a space.

VI. That if a straight line meet two other straight lines, so as to make the two interior angles on the same side of it, taken together, less than two right angles, these straight lines being continually produced shall at length meet upon that side, on which are the angles, which are together less than two right angles.

The word rendered “Postulates” is in the original airhuara, "requests."

In the first three Postulates Euclid states the use, under certain restrictions, which he desires to make of certain instruments for the construction of lines and circles.

In Post. I. and 11. he asks for the use of the straight ruler, wherewith to draw straight lines. The restriction is, that the ruler is not supposed to be marked with divisions so as to measure lines.

In Post. III. he asks for the use of a pair of compasses, wherewith to describe a circle, whose centre is at one extremity of a given line, and whose circumference passes through the other extremity of that line. The restriction is, that the compasses are not supposed to be capable of conveying distances.

Post. IV. and v. refer to simple geometrical facts, which Euclid desires to take for granted.

Post. VI. may, as we shall shew hereafter, be deduced from a more simple Postulate. The student must defer the consideration of this Postulate, till he has reached the 17th Proposition of Book I.

Euclid next enumerates, as statements of fact, nine Axioms

« ΠροηγούμενηΣυνέχεια »