Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

II.

B. Translate:

Districtus ensis cui super impia
Cervice pendet non Siculae dapes
Dulcem elaborabunt saporem,

Non avium citharæque cantus
Somnum reducen. Somnus agrestium
Lenis virorum non humiles domos
Fastidit umbrosamque ripam,
Non Zephyris agitata Tempe.
Desiderantem quod satis est neque
Tumultuosum sollicitat mare,
Nec saevus Arcturi cadentis
Impetus aut orientis Haedi,
Non verberatae grandine vineae
Fundusque mendax, arbore nunc acquas
Culpante nunc torrentia agros
Sidera nunc hiemes iniquas.
Contracta pisces aequora sentiunt
Jactis in altum molibus; huc frequens
Caementa demittit redemptor

Cum famulis dominusque terrae
Fastidiosus. Sed Timor et Minae
Scandunt eodem quo dominus, neque
Decedit aerata triremi, et

Post equitem sedet atra Cura.
Quodsi dolentem nec Phrygius lapis
Nec purpurarum sidere clarior
Delenit usus nec Falerna

Vitis Achæmeniumque costum
Cur invidendis postibus et novo
Sublime ritu moliar atrium?
Cur valle permutem Sabina
Divitias operosiores?

1. (a) Destrictus ensis cui super impia
Cervice pendet.

(b) Contracta pisces aequora sentiunt
Jactis in altum molibus.

(c) Achæmeniumque costum.

(d) Nec Lethaea valet Theseus abrumpere caro
Vincula Pirithoo.

Write explanatory notes. Valet abrumpere: What is the pre augustan construction?

2. Nec Zephyris agitata Tempe. Describe the position of Tempe. Account for case of Zephyris. Give the Greek and Latin names of the winds.

3. Write notes on the syntax of the last two stanzas, where they

seem necessary.

4. Mark the gender and decline :-Tempe, compede, Alpibus, Hadria, Praeneste, fidibus.

5. Quote some imitations of Greek Syntax found in these Books.

6. Scan the following lines and name them and the system to which each belongs :

(a) Donare et pretium dicere muneri.

(b) Ducere nuda choros.

(c) Dura post paulo fugies inaudax.

(d) Delius et Patareus Apollo.

C. Translate into Latin: Duilius was the first to conquer the Carthaginians in a sea fight. He, seeing that the Roman vessels were excelled by the Carthaginians in swiftness, prepared iron grapnels (uncus). These machines were of great use to the Romans, for they grappled with the hostile vessels and then fought with the sword as if in a land fight, and, as they excelled the Carthaginians in strength, easily conquered them. About thirty of the enemies' ships were taken and thirteen were sunk. No victory was more acceptable to the Romans, for they were able to say that they had conquered all their enemies by sea and land.

Examiner..

MATHEMATICS.

.C. MACDONALD, M. A.

1.

GEOMETRY.

TIME: THREE HOURS.

Enuntiate and prove a Proposition in Book VI. of Euclid, of which the well-known 47th Proposition of Book I. is a special case.

2. If two triangles that have two sides of the one proportional to two sides of the other, are capable of being joined at one angle so that the homologous sides are parallel, the remaining sides shall be in the same straight line.

3. Make a triangle equiangular to a given triangle, such that a line drawn from the vertex making a given angle with the base may be equal to a given line.

4. ABC is a given triangle, and thro' any point Q within it AD, BE, CF are drawn meeting the sides in D, E, F. Prove

[blocks in formation]

5. The solid contained by the three sides of a triangle is equal to the solid whose base is the area of the triangle, and height equal to twice the diameter of the circle circumscribing the triangle.

6. A church window is in the form of a parallelogram surmounted by an equilateral arch it is a ft. broad, and b ft. in perpendicular height from the sill to the top of the arch. Find the area.

:

7.__ABC is a triangle, DEFG a square inscribed in it, FG coinciding with BC, and DE being the opposite side of the square. In the triangle ADE, another square is similarly inscribed, and in the remaining triangle towards A, another triangle, and so an, ad inf. The base of the triangle ABC a, and its height =h. Prove the sum of the a (a + h)2 a+2h

areas of the squares

=

=

ALGEBRA AND TRIGONOMETRY.

TIME: THREE HOURS.

1. Find the roots of the equation 4x3 28x261x - 42 = 0, it being given that one of the roots

the sum of the other two.

[merged small][merged small][ocr errors][ocr errors][subsumed][merged small][merged small]

3. If x+y, 2y, y+z, are in Har. Progression, then x, y, z, are in Geom. Progression.

4. Given a Table of Logarithmic Sines, Cosines, and Tangents; shew how the Tabular Functions of Secant, Cosecant, Cotangent, are obtained, giving proof of the method.

5. p and q are the fractions expressive of the probability for and against an event happening on a single trial. If n trials are made, find the probability of its happening at least r times.

=

6. A,B,C are the angles of a triangle: prove sin A—sin B+sin C =

4 sin

A

B C

COS sin and find all the values of in the equation 2 2 2

[blocks in formation]

7. Find angles, area and radius of inscribed circle, in the triangle whose sides are 5a, 6a, 7a.

8. At the distance of d ft. from an observer, a balloon rose from the ground uniformly thro' perfectly still air. After t seconds he observed the angle of elevation, "and, after t' seconds more, the angle was twice the former. Find the balloon's height at second observation.

Examiner.

LOGIC.

.PROFESSOR LYALL, LL. D.

TIME: THREE HOURS.

1. Distinguish between Generalization and Classification in the formation of Concepts, with Examples.

2. What two kinds of reasoning are founded on these processes respectively? Which of these is alone properly reasoning? Give the explanation of this.

3. Give the rules of the Syllogism according as reasoning proceeds in one or other of these ways. What Fallacies result from a violation of these rules, in the case of the Extensive Syllogism?

4. Show how the Disjunctive and Hypothetical Syllogisms are simply modes of Identification and Differentiation, and give the law or principle of each of these Syllogisms.

5. What do you understand by the Moods and Figures of the Syllogism? Characterize the 2nd and 3rd Figures. Are they reducible to the first?

6. Show how the Doctrine of Method arises out of Logic. Give the rule of Definition and Division respectively.

Examiner....

1.

INORGANIC CHEMISTRY.

.PROFESSOR GEORGE LAWSON, LL. D.

TIME: THREE HOURS.

"The proportions by weight according to which bodies combine are invariable for each combination." Illustrate this statement by examples. "When two bodies, simple or compound, unite in several proportions to form several compounds, the weight of one of these bodies being considered as constant, the weight of the other varies according to a simple ratio.' Explain more fully this law of multiple proportions and illustrate it by examples.

2. Give a careful account of the history, and describe the mode of preparation and chemical properties of Oxygen.

3. Give a verbal explanation of the following chemical equation:2 Cr Og + 12HCl = Cr2 C1+6H20+3C12.

8

4. What are the physical properties of the Chlorides? their chemical properties? Compare them with true Salts.

5. What is a Hydracid? an Oxacid? a Salt? Explain the mode of formation of Salts. What is meant by double decomposition?"

66

What are neutral, acid and basic Salts respectively?

6. Explain the process of manufacture of Oil of Vitriol (Sulphuric Acid).

Examiner..

BOTANY.

PROFESSOR GEORGE LAWSON, LL. D.

TIME: THREE HOURS.

1. Give a careful description of a plant cell, with special reference to the protoplasm, the cellulose layer forming the sac, and the usual cell contents. Explain the ordinary modes of cell development.

2. Explain the difference in structure between Exogenous, Endogenous and Acrogenous stems, and point out the modifications in foliar venation peculiar to plants having these respective kinds of stems: also, in case of Exogens and Endogens, the number of parts of the floral organs and the peculiarities of the embryo.

3. Explain the process of impregnation and formation of the embryo in flowering plants.

4. Explain the process of reproduction in any one of the following groups :-(1.) Ferns. (2.) Mosses. (3.) Algæ. (4;) Fungi.

5. Give an outline of the Natural System of Classification of Plants.

6. Give a description of the chief peculiarities of structure observable in Canadian Leguminosa (Fabacea).

ENTRANCE EXAMINATIONS.

CLASSICAL HISTORY AND GEOGRAPHY.

Examiner.

..JOHN JOHNSON, M. A.

SECOND YEAR.

1.

Rome.

TIME: TWO AND A HALF HOURS.

A full description of any one of the Legislative Assemblies at

2. What was the Latin League? How, why and when was it broken up? What was Jus Latii?

3. Describe the events that took place in Italy in 207 B. C.

4. The Manilian Law and the proceedings carried on under it in the following year.

5. The changes introduced and proposed by Julius Cæsar.

6. The events that immediately followed March 15th, 44.

7. The chief divisions of Hispania, the situation of its towns and rivers, giving both ancient and modern names.

8. Describe the situation of the following places and if famous, mention why:-Lugdunum, Corfinium, Egesta, Baiæ, Allia, Anxur.

1.

THIRD YEAR.

TIME: TWO AND A HALF HOURS.

Give as minute an account as you can of the political organization of Athens in Solon's time.

2.

3.

Describe the reforms introduced by Clisthenes.

What historical events took place elsewhere on the days on which the battles of Salamis and Platea were fought?

4.

What were the causes of dissatisfaction among the non- -Athenian members of the confederacy of Delos, down to the time of Pericles?

5. Describe Philip's actions during 359-8 B. C.

6. Tell what you know of the life and works of any one of these:Pheidias, Polycletus, Myron.

7. Draw an outline map of Asia Minor, showing its chief divisions and their ancient names.

8. Describe the situation of the following places, and relate briefly any historical or legendary events connected with them:-Granicus, Ithome, Pylus, Eurymedon, Miletus, Naupactus.

C

« ΠροηγούμενηΣυνέχεια »