Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

enter into these equations be given or known, the remaining three can be determined (Bourdon, Art. 103); hence, if three parts of a spherical triangle be known, the other three may be determined from them. These are the primary formulas of Spherical Trigonometry. They require to be put under other forms to adapt them to logarithmic computation.

6. Let the angles of the spherical triangle, polar to ABC, be denoted respectively by A', B', C', and the sides by a', b', c'. Then (B. IX., P. 6),

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]

Since equations (1) are equally applicable to the polar triangle, we have,

cos a' cos b' cos c' + sin b' sin c' cos A':

substituting for a', b', c' and A', their values from the polar triangle, we have,

cos A

= cos B cos C- sin B sin C cos a; and changing the signs of the terms, we obtain,

[merged small][ocr errors][merged small]

Similar equations may be deduced from the second and third of equations (1); hence,

[merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

That is: The cosine of either angle of a spherical triangle, is equal to the product of the sines of the two other angles into the cosine of their included side, minus the product of the cosines of those angles.

7. The first and second of equations (1) give, after transposing the terms,

[merged small][ocr errors][ocr errors][merged small][merged small]

cos a + cos b — cos c (cos a + cos 6) = sin`s (sin b cos A+ sin a cos B);

and by substracting the second from the first,

cos a

cos bcos c (cos a

· cos b) = sin c (sin b cos A - sin a cos B);

these equations may be placed under the forms,

(1 · cos c) (cos a + cos b) = sin c (sin b cos A + sin a cos B),

(1 + cos c) (cos a

[ocr errors]

==

-

cos b) = sin c (sin b cos A — sin a cos B);

multiplying these equations, member by member, we obtain, (1-cos e) (cosa - cos3b) = sin2c (sin2 b cos2 A— sin2 a cos2 B):

substituting sin c for 1 cos c, 1 sin A for cos A, and 1- sin2 B for cos2 B, and dividing by sin3 c, we have,

[blocks in formation]

cos2 a cos2b sin2 b sin' b sin? A

[ocr errors]

sin2 a + sin a sin2 B:

sin a, we have,

then, since cos2 a - cos2 b sing b =

sineb sin A = sin a sin2 B;

and, by extracting the square root,

[blocks in formation]

By employing the first and third of equations (1) we shall find,

[blocks in formation]

and, by employing the second and third,

sin b sin C sin e sin B; hence,

[blocks in formation]

-; or sin C: sin A :: sin c : sin a, ((3)

or sin B sin A: sin b: sin a,

[blocks in formation]

That is: In every spherical triangle, the sines of the angles are to each other as the sines of their opposite sides.

8. Each of the formulas designated (1) involves the three sides of the triangle together with one of the angles. These formulas are used to determine the angles when the three sides are known. It is necessary, however, to put

them under another form to adapt them to logarithmic computation.

Taking the first equation, we have,

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

Putting

}s

sin b sin c

sin(a + b + c) sin (b + c − a)

(Art. 85).

s = a + b + c, we shall have,

= = 1 (a+b+c) and sa(b+ca):

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small]

9. Had we subtracted each member of the first equation in the last article, from 1, instead of adding, we should, by making similar reductions, have found,

[blocks in formation]

sin

[blocks in formation]

} B = √/ sin 3 (a + b

sin(a+b-c) sin (b+ca), (5)

sin C

sin a sin c

sin(a + c b) sin (b + c − a)

sin a sin b

Putting

s = a + b + c, we shall have,

}s—a=}(b·+c—a), }s—b=1 (a+c—b), and }s—c=}(a+b−c);

[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

10. From equations (4) and (6) we obtain,

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]

11 We may deduce the value of the side of a triangle in terms of the three angles by applying equations (5), to the polar triangle. Thus, if a', b', c', A', B', C", represent the sides and angles of the polar triangle, we shall have (B. IX., P. 6),

[blocks in formation]

180° - a', B 180° — b', C 180° - c';

[merged small][merged small][merged small][ocr errors][merged small][merged small]

hence, omitting the ', since the equations are applicable to any triangle, we shall have,

[blocks in formation]

}

} S − A = (C + B- A), S - B = } (A + C - B), } S − C = }} (A + B − C') ;

and,

[blocks in formation]

12. All the formulas necessary for the solution of spheri cal triangles, may be deduced from equations marked (1). If we substitute for cos b in the third equation, its value taken from the second, and substitute for cos2 a its value 1- sin? a, and then divide by the common factor, sin α, we shall have,

cos c sin a sin c cos a cos B + sin b cos C.

[blocks in formation]

Therefore, cot c sin a = cos a cos B+ cot C sin B.

Hence we may write the three symmetrical equations,
cot a sin b = cos b ccs C+ cot A sin C,

cot b sin c = cos c cos A+ cot B sin A, (10)
cot c sin a = cos a cos B+ cot C sin B.

That is: In every spherical triangle, the cotangent of one o the sides into the sine of a second side, is equal to the cosine of the second side into the cosine of the included angle, plus the cotangent of the angle opposite the first side into the sine of the included angle.

« ΠροηγούμενηΣυνέχεια »