# Skeleton propositions &c. of Euclid, books i and ii, with references, by H. Green, Τόμος 1

1868
0 Κριτικές
Οι αξιολογήσεις δεν επαληθεύονται, αλλά η Google ελέγχει και καταργεί ψευδές περιεχόμενο όταν το εντοπίζει

### Τι λένε οι χρήστες -Σύνταξη κριτικής

Δεν εντοπίσαμε κριτικές στις συνήθεις τοποθεσίες.

### Περιεχόμενα

 Ενότητα 1 xxiii Ενότητα 2 xxx Ενότητα 3 xli Ενότητα 4 xliv
 Ενότητα 5 Ενότητα 6 Ενότητα 7

### Δημοφιλή αποσπάσματα

Σελίδα xxiv - If two triangles have two sides of the one equal to two sides of the other, each to each, but the base of the one greater than the base of the other; the angle also contained by the sides of that which has the greater base, shall be greater than the angle contained by the sides equal to them of the other.
Σελίδα xx - Therefore any two sides, &c. QED PROP. XXI. THEOR. If, from the ends of the side of a triangle, there be drawn two straight lines to a point within the triangle, these shall be less than, the other two sides of the triangle, but shall contain a greater angle.
Σελίδα xxiv - IF two triangles have two angles of one equal to two angles of the other, each to each ; and one side equal to one side, viz. either the sides adjacent to the equal angles, or...
Σελίδα xli - To a given straight line to apply a parallelogram, which shall be equal to a given triangle, and have one of its angles equal to a given rectilineal angle.
Σελίδα xliii - The complements of the parallelograms, which are about the diameter of any parallelogram, are equal to one another. Let ABCD be a parallelogram, of which the diameter is AC...
Σελίδα xxxviii - TRIANGLES upon the same base, and between the same parallels, are equal to one another.
Σελίδα xxi - To make a triangle of which the sides shall be equal to three given straight lines, but any two whatever of these must be greater than the third (20.
Σελίδα xl - If a parallelogram and a triangle be upon the same base, and between the same parallels; the parallelogram shall be double of the triangle.
Σελίδα xxxviii - Triangles upon equal bases, and between the same parallels, are equal to one another.