# The First Two Books of the Elements of Euclid ... with Additional Figures, Notes, Explanations, and Deductions, by N. Pocock

1852
0 КсйфйкЭт
Пй бойплпгЮуейт ден ерблзиеэпнфбй, бллЬ з Google елЭгчей кбй кбфбсгеЯ шехдЭт ресйечьменп ьфбн фп енфпрЯжей

### Фй лЭне пй чсЮуфет -Уэнфбоз ксйфйкЮт

Ден енфпрЯубме ксйфйкЭт уфйт ухнЮиейт фпрпиеуЯет.

### Ресйечьменб

 Еньфзфб 1 1 Еньфзфб 2 4 Еньфзфб 3 6 Еньфзфб 4 7 Еньфзфб 5 8 Еньфзфб 6 17 Еньфзфб 7 32 Еньфзфб 8 37
 Еньфзфб 15 2 Еньфзфб 16 3 Еньфзфб 17 4 Еньфзфб 18 6 Еньфзфб 19 7 Еньфзфб 20 9 Еньфзфб 21 10 Еньфзфб 22 11

 Еньфзфб 9 44 Еньфзфб 10 63 Еньфзфб 11 86 Еньфзфб 12 112 Еньфзфб 13 113 Еньфзфб 14 1
 Еньфзфб 23 12 Еньфзфб 24 13 Еньфзфб 25 14 Еньфзфб 26 15 Еньфзфб 27 16 Еньфзфб 28

### ДзмпцйлЮ брпурЬумбфб

УелЯдб 18 - If two triangles have two sides of the one equal to two sides of the...
УелЯдб 67 - To a given straight line to apply a parallelogram, which shall be equal to a given triangle, and have one of its angles equal to a given rectilineal angle.
УелЯдб 51 - That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.
УелЯдб 109 - ... subtending the obtuse angle, is greater than the squares of the sides containing the obtuse angle, by twice the rectangle contained by the side upon which, when produced, the perpendicular falls, and the straight line intercepted without the triangle between the perpendicular and the obtuse angle. Let ABC be an obtuse-angled triangle, having the obtuse angle ACB, and from the point A let AD be drawn perpendicular to BC produced.
УелЯдб 12 - Mrs. R. Lee's Elements of Natural History ; or, First Principles of Zoology : Comprising the Principles of Classification, interspersed with amusing and instructive Accounts of the most remarkable Animals.
УелЯдб 53 - To draw a straight line through a given point parallel to a given straight line. Let A be the given point, and BC the given straight line ; it is required to draw a straight line E iR.
УелЯдб 76 - In any right-angled triangle, the square which is described upon the side subtending the right angle, is equal to the squares described upon the sides which contain the right angle.
УелЯдб 34 - ABD, the less to the greater, which is impossible ; therefore BE is not in the same straight line with BC. And in like manner, it may be demonstrated, that no other can be in the same straight line with it but BD, which therefore is in the same straight line with CB.
УелЯдб 11 - LET it be granted that a straight line may be drawn from any one point to any other point.
УелЯдб 37 - Any two angles of a triangle are together less than two right angles. Let ABC be any triangle ; any two of its angles together are less than two right angles.