Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

277. The process of clearing a quantity of radical signs by multiplication, is called Rationalization, and we will now consider how we may find the factor which will rationalize a surd quantity, in some of the more important cases.

278. To find a factor which will rationalize any monomial.

It is evident that the factor in this case will be the monomial itself, with an index equal to the difference between unity and the given index. For, we have in general terms,

[blocks in formation]

2

The factor is x2; for, x3×xt = x§ = x.

279. To find a factor which will rationalize a binomial in the form of a±vb, or "Va±vb, m and n being each some power of 2.

The product of the sum and difference of two quantities is equal to the difference of their squares. Hence, if we multiply the given binomial in this case, by the same terms connected by the opposite sign, the indices of the product must be respectively the halves of the given indices; and a repetition of the process will ultimately rationalize the quantity, provided m and n are any powers of 2.

1. Rationalize a+vc.

The factor is a√c; for we have

(a+c) (a-v/c) = a'—c.

2. Rationalize va-√x.

(Va—Vx) (va+√x) = a−√x;
(a−√x) (a+√x) = a'—x,

a rational result; and the complete multiplier is

(Va+Vx) (a+√x).

A trinomial may be treated in a similar manner, when it contains only radicals of the 2d degree.

[merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small]

a rational result; and the complete multiplier is

(√5+√2+√3) (4—2√10).

Thus we perceive that it is necessary simply to change the sign of one of the terms of the trinomial, and multiply by the result, repeating the process with the product.

280. To find a factor which will rationalize any binomial surd whatever.

Let the binomial be represented by the general form,

[merged small][ocr errors][merged small][merged small]

Put x = a*and y = b′; and let n be the least common multiple of r and s. Then "y" will be rational. But x+y will exactly divide x+y" when n is odd, and x”—y” when n is even; and x—y will exactly divide a"-y" whether n is odd or even; (89). These quotients will therefore be the factors that will rationalize the respective divisors. Hence, let q represent the required factor;

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

1. Rationalize the binomial a+b

Since n = 6, an even number, we have from (2),

[ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small]

(a3+b§) × (a§—a2b3+a3¿§—ab+a3¿§—b§) = a'—bo,

the rational result.

The foregoing methods may be applied in the solution of the foliowing

a

EXAMPLES.

1. Reduce to a fraction whose denominator shall be rational.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small]

1/2 79

4. Reduce to a fraction whose denominator shall be rational.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]
[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

13. Find the factor which will rationalize √/5-2.

[merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small]

281. A Radical Equation is one in which the unknown quantity is affected by the radical sign.

282. In order to solve a radical equation, it is necessary in the first place to rationalize the terms containing the unknown quantity. In case of fractional terms, this may be effected in part by methods already explained. But the process is commonly one of involution.

The following are examples of simple equations containing radical quantities.

[merged small][merged small][ocr errors][subsumed][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][subsumed][merged small][merged small][merged small][merged small]

3. Given √x+a+

OPERATION.

V x V x
√x+√x—5

X

4x-35

=

5

4x-35

;

5

2x-5-21-5x

5

2√x2-5x=2x-30;
Và_5x=x15;

25x=225;

= 9.

x=

mya

m

=

to find x.

[ocr errors]

The least common multiple of the denominators is x-a= (√x+va) (√x-√α); and the solution will be as in the following

[merged small][merged small][ocr errors][merged small][merged small][ocr errors][subsumed][ocr errors][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small]
« ΠροηγούμενηΣυνέχεια »