Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση
[blocks in formation]

(40) 6000 at 10d. (41) 4652 at 104d. (42) 2476 at 10d.

(43) 2176 at 104d. (44) 1276 at 11d.

(45) 2142 at 114d.

(46) 4760 at 11d.

- (47) 640 at 114d.

Case 3. When the price is more than a shilling, but less than two.

RULE.

Take the part or parts, with so much of the given price as is more than a shilling (as in the last rule), which add to the given quantity, and the sum will be the answer in shillings, &c. which, divided by 20, will give pounds. Note.-The method of performing this case being 50 mttle

different from the last, I shall only give a few examples, which, by proper instructions from the tutor, will suffice.

EXAMPLES. (48) 1074 at 1s. 104d.

(49) 2140 at 1s. 01d. (50) 1749 at 1s. 111d.

(51) 21 40 at 1s. 5d.

(52) 1453 at 1s. 7 d.

(53) 1614 at 1s. 10d.

(54) 2647 at 1s. 11 d.

Case 4. When the price consists of any even number of shillings under 20.

RULE, Multiply the given quantity by half the price, doubling the first figure of the product for shillings; and the rest of the product will be pounds.

[blocks in formation]

Case 5. When the price is any odd number of shillings under 20.

RULE. Multiply the given quantity by the price; and the product will be the answer in shillings, which, divided by 20, will give pounds.

EXAMPLES. (64) 2174 at 7s. (65) 1427 at 9s. (66) 647 at 115. (67) 267 at 13s. (68) 274 at 178. (69) 1260 at 19s.

Case 6. When the price is shillings, or shillings and pence, and they an aliquot part of a pound.

RULE. Divide by the aliquot part, and the quotient will be the

answer.

EXAMPLES.

(70) 2420 at 45.

(71) 1764 at 58.

(72) 4762 at 1s. 8d.

(73) 467 at 2s. 6d. (74) 1760 at 3s. 4d. (75) 176 at 6s. 8d.

Case 7. When the price is shillings and pence, and the shillings and pence are not an aliquot part of a pound.

RULE. Multiply the given quantity by the shillings, and take parts for the pence, &c. add them together, and the sum will be the answer in shillings, which, divided by 20, will give pounds.

EXAMPLES.
(76) 1420 at 3s. 3d. (77) 427 at 5s. Id...

(78) 402 at 10s. 8 d.

(79) 174 at 17s. 9 d.

(80) 273 at 19s. 4 d.

(81) 260 at 148. 111d.

Case 8. When the price is pounds only..

RULE. Multiply the given quantity by the price, and the product will be the answer.

EXAMPLES. (82) 120 at 41.

(83) 96 at 171.

(84) 100 at 31.

(85) 142 at 21.

Case 9. When the given price is pounds and shillings.

RULE. Multiply the quantity given by the pounds, as in the last case; and proceed with the shillings, if they are even, as in Case 4 ; but if odd, take aliquot parts, add them together, and the sum will be the answer; or reduce the given price to shillings, by which multiply the fixed quantity, and divide by 20 ; and this will give the answer.

EXAMPLES.

(86) 649 at 21. 6s.

(87) 526 at 71. 16s. (88) 142 at 1l. 178.

(89) 164 at 24l. 198. (90) 271 at 51. 78. (91) 604 at 201. 93.

(92) 914 at 101. 158.

(93) 737 at 1l. 14s.

Case 10. When the price is pounds, shillings, and pence, and the shillings and pence are an aliquot part of a pound.

RULE. Multiply the given quantity by the pounds, as in the last

and take parts for the shillings and pence, as in Case 6; add them together, and the sum will be the answer.

rule;

EXAMPLES.
(94) 274 at 71. 6s. 8d. (95) 120 at 121. 3s. 4d.

(96) 97 at 91. 1s. 8d.

(97) 512 at 421. 5s.

Case 11. When the price is pounds, shillings, pence, and farthings, and the shillings and pence are not an aliquot part of a pound.

RULE. Reduce the pounds and shillings into shillings; multiply the given quantity by the shillings, as in Case 9; take parts for the pence and farthings, as in Case 2.

Note.-When the given quantity does not exceed 100, proceed as in Sect. IX.

EXAMPLES. (98) 1472 at 4l. 6s. 7{d. (99) 279 at 6l. 11s. 9 d.

(100) 1420 at 191. 143. 111d. (101) 2074 at 1l. 17s. 51d. (102) 27 at 4l. 11s. 814. (103) 64 at 121. 13s. 7d. .

Case 12. When the price and quantity given are of several denominations.

RULE. Multiply the price of one by the quantity given, and take parts for quarters, pounds, &c. Add them together, and the sum will be the answer.

EXAMPLES. (104) Bought 7 cwt, 3 qrs. 18 lb. of sugar, at 17s. 6d. per

cwt. What comes it to? (105) Sold 420 oz. 15 dwts. 16 grs. of gold, at 31. 16s. 10 d.

per ounce. What comes it to? (106) Bunght tobacco, at 31. 178 41d. per cwt. What is the

worth of 72 cwt. 3 qrs. 19 1h.? (107) Bought 12 cwt. 1 qr. 17 lb. of hops, at 41. 45. 4d. per

cwt. What do they stand me in? (108) Sold 23 cwt. 18 lb. of sugar, at 41. 14s. 1 d. per cwt.

What comes it to? (109) What is the rent of 476 acres, 3 roods, 28 perches, at

31. 7. 11d. acre ? (110) Sold 16 cwt. 2 qrs. of tallow, at 21. 6s. 11d. per cwt.

What comes it to? (111) Sold 48 cwt. 2 grs. 7 lb. of fine hyson tea, at 74). 16s. 6d. per cwt.

What must I receive for the same? (112) What is the value of 24 lb. of double-refined sugar, at

41. 175. per cwt.? (113) What is the value of 17 lb. of Malaga raisins, at 31, 58.

4d. per cwt.? Note. When the pupil is perfect in all the rules to the preceding Cases, he may then be taught the contractions.

EXAMPLES. (1) 1276 at d. (2) 1740 at 21d. (3) 14-20 at 7|d. (4) 3162 at 1s. 7d. (5) 427 at 5s. 9d. (6) 246 at 178. 10d.

(7). 241 at 61, 19s. (8) 641 at 1l. 15s.

per

« ΠροηγούμενηΣυνέχεια »