Εικόνες σελίδας
PDF
Ηλεκτρ. έκδοση

INTELLECTUAL

ARITHMETIC,

UPON THE

INDUCTIVE METHOD

OF

INSTRUCTION.

BY WARREN COLBURN, A. M.

STEREOTYPED AT THE BOSTON TYPE AND STEREOTYPE FOUNDRY.

BOSTON:

WILLIAM J. REYNOLDS,
No. 20 CORNHILL.

HARVAR
UNIVERSITY.

KPC775

48412

DISTRICT OF MASSACHUSETTS, TO WIT: District Clerk's Office. BE it remembered, that on the Twenty-third day of March, A. D 1826, in the fiftieth Year of the Independence of the United States of America, Cummings, Hilliard, and Company, of the said District, have deposited in this office the Title of a Book, the right whereof they claim as Proprietors, in the words following, to wit:

"Intellectual Arithmetick, upon the Inductive Method of Instruction By Warren Colburn, A. M."

66

In conformity to the Act of the Congress of the United States, entitled, "An Act for the encouragement of Learning, by securing the copies of maps, charts, and books, to the authors and proprietors of such copies during the times therein mentioned:" and also to an Act entitled, An Act supplementary to an Act, entitled, An Act for the encouragement of learning, by securing the copies of maps, charts, and books, to the authors and proprietors of such copies during the times therein mentioned; and extending the benefits thereof to the arts of Designing, Engraving, and Etching Historical, and other prints."

JOHN W. DAVIS, Clerk of the District of Massachusetts

RECOMMENDATIONS.

Sir,

Boston, 15 November, 1821. I have made use of the Arithmetic and Tables, which you sometime since prepared, on the system of Pestalozzi; and have been much gratified, with the improved edition of it, which you have shown me. I am satisfied from experiment, that it is the most effectual and interesting mode of teaching the science of numbers with which I am acquainted.

Respectfully,

Mr. Warren Colburn.

your obedient servant,
HENRY COLMAN

Having been made acquainted with Mr. Colburn's treat se on Arithmetic, and having attended an examination of his scholars who had been taught according to this system, I am well satisfied that it is the most easy, simple, and natural way of introducing young persons to the first principles in the science of numbers. The method here proposed is the fruit of much study and reflection. The author has had considerable experience as a teacher, added to a strong interest in the subject, and a thorough knowledge not only of this but of many of the higher branches of mathematics. This little work is therefore earnestly recommended to the notice of those who are employed in this branch of early instruction, with the belief that it only requires a fair trial in order to be fully ap proved and adopted. J. FARRAR, Prof. Math. Harvard University. Cambridge, Nov 16, 1821.

PREFACE.

As soon as a child begins to use his senses, nature continually, presents to his eyes a variety of objects; and one of the first properties which he discovers, is the relation of number. He intuitively fixes upon unity as a measure, and from this he forms the idea of more and less; which is the idea of quantity.

The names of a few of the first numbers are usually learned very early; and children frequently learn to count as far as a hundred before they learn their letters.

As soon as children have the idea of more and less, and the names of a few of the first numbers, they are able to make small calculations. And this we see them do every day about their playthings, and about the little affairs which they are called upon to attend to. The idea of more and less implies addition; hence they will often perform these operations without any previous instruction. If, for example, one child has three apples, and another five, they will readily tell how many they both have; and how many one has more than the other. If a child be requested to bring three apples for each person in the room, he will calculate very readily how many to bring, if the number does not exceed those he has learnt. Again, if a child be requested to divide a number of apples among a certain number of persons, he will contrive a way to do it, and will tell how many each must have. The method which children take to do these things, though always correct, is not always the most expeditious.

The fondness which children usually manifest for these exercises, and the facility with which they perform them, seem to indicate that the science of numbers, to a certain extent, should be among the first lessons taught to them.*

To succeed in this, however, it is necessary rather to furnish occasions for them to exercise their own skill in performing examples, than to give them rules. They should be allowed to pursue their own method first, and then they should be made to observe and explain it, and if it was not

See on this subject two essays, entitled Juvenile Studies, in the Prize Book of the Latin school, Nos. I and II. Published by Cummings & Hilliard, 1820 and 1821.

The use of the plates is explained in the Key at the end of the book. Several examples in each section are performed in the Key, to show the method of solving them. No answers are given in the book, except where it is necessary to explain something to the pupil. Most of the explanations are given in the Key; because pupils generally will not understand any explanation given in a book, especially at so early an age. The instructer must, therefore, give the explanation viva voce. These, however, will occupy the instructer but a very short time.

The first section contains addition and subtraction, the second multiplication. The third section contains division. In this section the pupil learns the first principles of fractions and the terms which are applied to them. This is done by making him observe that one is the half of two, the third of three the fourth of four, &c. and that two is two thirds of three, two fourths of four, two fifths of five, &c.

The fourth section commences with multiplication. In this the pupil is taught to repeat a number a certain number of times, and a part of another time. In the second part of this section the pupil is taught to change a certain number of twos into threes, threes into fours, &c.

In the fifth section the pupil is taught to find, }, 4, &c. and,,, &c. of numbers, which are exactly divisible into these parts. This is only an extension of the principle of fraotions, which is contained in the third section.

In the sixth section the pupil learns to tell of what number any number, as 2, 3, 4, &c. is one half, one third, one fourth, &c.; and also, knowing 3, 4, 4, &c. of a number, to find that

number.

These combinations contain all the most common and most useful operations of vulgar fractions. But being applied only to numbers which are exactly divisible into these fractional parts, the pupil will observe no principles but multiplication and division, unless he is told of it. In fact, fractions contain no other principle. The examples are so arranged, that almost any child of six or seven years old will readily comprehend them. And the questions are asked in such a manner, that, if the instructer pursues the method explained in the Key, it will be almost impossible for the pupil to perform any example without understanding the reason of it. Indeed, in

formed by addition, serves both for multiplication and division. In this treatise the same plate serves for the four operations.

This remark shows the necessity of making the pupil attend to his manner of performing the examples and of explaining to him the dif ference between them.

GENERAL VIEW OF THE PLAN

Every combination commences with practical examples Care has been taken to select such as will aptly illustrate the combination, and assist the imagination of the pupil in per forming it. In most instances, immediately after the prac tical, abstract examples are placed, containing the same numbers and the same operations, that the pupil may the more easily observe the connexion. The instructer should be careful to make the pupil observe the connexion. After these are a few abstract examples, and then practical questions again.

The numbers are small, and the questions so simple, that almost any child of five or six years old is capable of understanding more than half the book, and those of seven or eight years old can understand the whole of it.

The examples are to be performed in the mind, or by means of sensible objects, such as beans, nuts, &c. or by means of the plate at the end of the book. The pupil should first perform the examples in his own way, and then be made. to observe and tell how he did them, and why he did them 80.*

* It is remarkable, that a child, although he is able to perform a va riety of examples which involve addition, subtraction, multiplication, and division, recognises no operation but addition. Indeed, if we analyze these operations when we perform them in our minds, we shall find that they all reduce themselves to addition. They are only different ways of applying the same principle. And it is only when we use an artificial method of performing them, that they take a different

form.

If the following questions were proposed to a child, his answers would be, in substance, like those annexed to the questions. How much is five less than eight? Ans. Three. Why? because five and three are eight. What is the difference between five and eight? Ans. Three. Why? because five and three are eight. If you divide eight into two parts, such that one of the parts may be five, what will the other be? Ans. Three. Why? because five and three are eight.

How much must you give for four apples at two cents apiece? Ans. Eight cents. Why? because two and two are four, and two are six, and two are eight.

How many apples, at two cents apiece, can you buy for eight cents? Ans. Four. Why? because two and two are four, and two are six, and two are eight.

We shall be further convinced of this if we observe that the same table serves for addition and subtraction; and another table which is

« ΠροηγούμενηΣυνέχεια »