tan E= tanza.tan b.sin C sinja.sin b.sin C and cos o= cos(a + b). (W. Ch. viii. prop. 13; Leg. Geom. Note x; L. 177, 263—6.) (24.) Let R, R, be the circular radii of the inscribed, and circumscribing circles, N (L. 270, 1.) N n tan R sin s COSS tan R, n (25.) Solution of right-angled spherical triangles. a, b, the sides, C, the hypothenuse. 90° - A, 90°-B, a, b, 90° - C; any one of which being called the middle part, M, the two adjacent to m on each side of it, A1, A2, and the two remaining or opposite parts, 01, 02 ; sin m=tan 17. tan دوم = COS 01.COS 02. [1] cos c=cot A.cot B; These are all the forms essentially different ; four more analagous to [3], [4], [5], [6], may be obtained by changing A, a, into B, b, and vice versa. These rules may be applied to a quadrantal triangle, in which c=90°, if A, B, - (90°-C), 90°-a, 90° - b, be taken as the circular parts. Any angle, and the side opposite are either both > 90°, or both < 90°. An oblique angle cannot be less, if acute, nor greater, if obtuse, than the opposite side. The sides are both > 90°, or both < 90°, if the hypothenuse <90°; and one side > 90°, and the other < 90°, if the hypothenuse > 90°. A side is > or < hypothenuse, according as it is > or < 90°. (W. Chap. X; L. 202—9.) [1] Given A, c: sin a=sin c.sin A ; log Sin a=log Sin c + log Sin A - log r. tan b=tan c.cos A ; log Tanb=log Tan c + log Cos A – logr. cot B=cos c.tan A; log Cot B=log Cosc + log Tan A – log r. <, The results obtained in [2], [4], are doubtful; the ambiguity may in some cases be removed by attending to the conditions stated in page 118. When a small angle is to be determined from its cosine, or an angle nearly = 90° from its sine, a small error in the sine or cosine gives a large one in the angle; in such cases some of the following formulæ will give more accurate results. tan ( A + B - 459) tan ( A - B - 459) 1 2 3 sin (c+b) 13 tan; (c + a) tan (45° +į A)= tan (c-a) tan (A + a) tan (45° +èc)= tan}(A — a) sin (A + a) tan (45° +5)= sin (A-a ) cot (A + a) tan; (A - a) (W. Ch. x; L. S. v; C. Ch. xvii.) – 6 ; (26.) Solution of oblique-angled spherical triangles. First Case: given a, b, c. 2 [1] sin A= . sin 8. sin (8—a). sin (s— b), sin(8—c))"; sin b.sin c log Sin A=log 2 + log r - log Sin b- log Sin c +}{log Sin 8 + log Sin (8-a) + log Sin (s—b) + log Sin (s — c)}. sin (8—b). sin (8 —c) [2] (sin A)' = sin b.sin c log Sin A=}{log Sin (s-- ) + log Sin (8--c) log Sin b-log Sinc} + log r. sin s.sin (s - a) [3] (cos A)2 = sin b.sin c log Cosz A= {log Sin s + log Sin (s-a) – log Sin b-log Sinc} + log r. sin (s—b). sin (s—c). (tanja)= sin s.sin (s - a) log Tanza=}{log Sin (8—6) + log Sin (s—c) - log Sin s - log Sin (s-a)} + log r. [5] Assume cos = cos b.cosc, log Cos 0 - log Cos b + log Cosc – log r; then 2 sin}(@+a).sin:((-a) sin b. sin c log Cos A=log 2 + log Sin}(@+a) + log Sinį(0 - a) – log Sinb – log Sin c + log r. A-90°, and e- a have the same sign. cosb.cos C [6] Assume tan p= ܪ COS' A : ; sin a log Tan p=log Cosb + log Cosc – log Sin a; then cos (a +0) COS A = cos p.sin b.sinc log Cos A=log Cos (a +0) + 3 log ro – log Cosp-log Sin b— log Sin c. Q |