log Cosß= log Cos a + log Cos a – log Cos b: Sixth Case: given A, B, a. To determine 6: sin B sinb=sin a ; sin A sin a log Sin b=log Sin a + log Sin B – log Sin A. sin A The above remarks on may here be applied to sin 6 sin B C, and c may be determined as above; or thus, log Sin ß=log Sin a + log Cos A – log Cos B : then C=a+ß, as above. Assume tan a=tan a.cos B, log Tan a=log Tan a + log Cos B – logr. log Sin ß= log Sin a + log Cos A – log Cos B; then c=a+ß, as above. (W. Ch. xi; C. Ch. xviii; L. 221–62: Legendre, Trig. 84–91; Delambre, Astron. 138-83.) (27.) Series for the sine, cosine, &c. in terms of the arc. 23 27 + &c. a 1.2.3 1.2.3.4.5 1....7 1 cosec = + 8 + + &c. 1 7203 31x5 3.127x7 + + 62 · 1382 211 tan x = x + + + + 32.5.7 34.5.7 34.52.7.11 929569x15 + x3 17x7 + E + &c. a vers X= 1 2009 3.5.7.11 1382 x11 4213 3617.x,15 - &c. 36.53.7.11.13 36.52. 7.11.13 37.54.7.11.13.17 ro + - &c. B (C. 266–302.) 1.2 1.2.3.4 1...6 (28.) Series expressing the inverse circular functions. 1 2 3 1.3 205 1.3.5 27 sin -18 = x + + @? tan -1x = x 3 5 7 + 1.3 202 1.3.5 23 + + + &c. + + &c. 8 3 + cosec + &c. vers -tx=(2x)}. { 1+ + &c. &c.}" (29.) Series for determining the value of 7. 1 1 1 1 + 9 1 5.32 T 1 6 7.33 1 = tan4 tan-1 43 7.1003 + &c.) + = 30° = {V3(1-378+ + &c. &c.) Euler's Method. - + tan-1 = (1-4+5-7+ &c) 1 Machin's Method. = 4 tan-- 239 4 42 + 1 &c.). 239 3.57121 5.571212 n=3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 0938446, &c. (Lacroix, Introd. Diff. Calc. 43–5.) (30.) Formulæ involving impossible quantities. 1 2T (@v=i-8V=7). (exv1 +e-sv-1). 1 62rv-1-1 tan a = Fi ev=+1 m n {(cos x+/- 1 sin x)" – (cos x~~-1 sin a)"} 2 1 cos nx=}{(cos x+1 sin x)" + (cos æ— 1 sin x)"}. sin x = COS X = m COS n sin nx= If (a +61)8+av-1 = Cosc + ✓– 1 Sinc, a . and =tan x, then c=gx + 4h.log (a? + b*), r=(a’ + b*)£s.e=ht 1 1+ / - 1 tanc log 2-1 1--1 tanc (C. ch. viii; Hind, 247; L. 357–62.) log, 1=2(m-1)-1; m being any integer. Of these values only one is possible, which is obtained by putting m= =1. (Lacr. Introd. 81.) (31.) Formulæ for the sums of arcs, and multiple arcs. Let the sum of the continued products of each combination of the sines of m of the arcs, aj, aq, &c. 0,9 into the cosines of the remaining n-m arcs, be represented by Cn-mSm; then sin (a, + a2 + &c. + an)=Cn-Cn-2S, + C9-49.-&c. Let Tm be the sum of the continued products of each combination of m tangents, T-T, + T; - &c. then tan (a, + a, + &c. +a)= 1-T, + T, - &c. If a,=Qq=&c. =an, then n(n-1)(n-2) sin na=n(cos a)" – 1 sin a (cos a)* -* (sin a)' +&c. 1. 2 3 to }(n + 1) terms, if n is odd, and to in terms, if n is even. n(n-1) cos na=(cos a)" (cos a:)" – 2 (sin a) 1. 2 (cos a)" - * (sin a)* - &c. 2 3 4 to è (n + 1) terms, if n is odd, and to in +1 terms, if n is even. |