2 (cos x) = cos 2x + 1. n(n-1) 2n-1 (cos x)"= =cos n& +n cos (n-2)x+ cos (n—4) +&c. 1. 2 If n is odd, the number of terms is į (n + 1), and the last 1.3.5... term is 1.2.3... (n+1) if n is even, the number of terms is n+1, and last term is 1.3.5...(n-1) 1.2.3... in The same observations may be applied to the expansion of (sin x)" : in both these series n must be a positive integer. (L. 400-2; C. 503-10.) n 2}(n-1) cos x; ..2n-1 SUMS OF TRIGONOMETRIC SERIES. (35.) sin x + sin (x + a) + sin (x + 2a) + &c. + sin (x + 1-1.a) sinna sin (x +in-1.a). B sin sa sin a sin (x + a) + sin (x + 2a) - &c. — sin (n + 2r-1.a) sin ra cosa cos (x+r-.a). sin na So, sin (x+m-1.a)= sin (x + {n-1.a). sin ra sin (x +r-5.a). y Sm(-1)"- 1 sin (« + m-1.a)= cosa sin a 2r S sin x - sin (x + a) + sin(x + 2a)-&c. + sin (x + 2r-2.a) cos (1 - ) sin (x+p-1.a). cos ka a a cos x + cos (x + a) + cos (x + 2a) + &c. + cos (x + n-1.a) cos (x + 1ñ– 1.a). B sin na sin La COS NO cos (x + a) + cos (x + 2a) - &c. - cos (x + 2r-1.a) COS X cos (x + a) + cos (x + 2a) - &c. + cos (x + 2r – 2.a) cos (0.+ 99 1.a). COS sin x + 2 sin 2 x + 3 sin 3x + &c. + n sin n x (n + 1) sin na n sin (n + 1) x 4 (sin x) 2r-1 cos (r – })a sin (x+r-1.a). a n Sm (-1)" – 1 sin (x + m - 1.a) = cosa B Socos (x + m - 1.a) = sinna cos (x + {n-1.a) cosa v sm (-1)" – 1 cos (x +m-1.a) sin (x +-.a). . cosa cos (r->) a Sm(-1)M–1 cos (x +m-1.a)= cos (x+r-1.a). cos 2r sin ra 2r-1 a n (n + 1) sin na n sin (n + 1) a Sym sin mx= 4 (sin ? x) COS &C + 2 cos 2 x + 3 cos 3x + &c. + n cos n x (n + 1) cos nxn cos (n + 1) x — -1 4 (sin ? x)? a tan x + cot x + tan 2x + cot 2 x + tan 4x + cot 4x + &c. + tan 21 -12 + cot 2n = 2 (cot X – cot 2" x). 1 B = cosec x + cosec 2x + cosec 4x + &c. + cosec 21 – 1 2 =cot. x-cot 2n-18. sin x – { sin 2x + } sin 3x – 1 sin 4x + &c. = 1x ! (L. 403-16; C. 514-28; Hind, Trig. 298–318.) cos & — } } cos 2x + { cos 3x - 1 cos 4x + &c. = logo (2 cos 1 x). n a (n + 1) cos n x — n cos (n + 1)x -1. Smm cos mx= 4 (sin x)? B Sm (tan 2m – 1x + cot 2m –x)=2 (cot & - cot 2" x). n a If tany= cos æ+ cos2x+cos3x+cos 4x + &c. =-- log. (2 sin ? x). (Lacr. Diff. Calc. Tome 2, 466.) n sin a then 1 +n cos a y=n sin x - , n* sin 2x + į no sin 3x- n* sin 4x + &c. (C. 513.) If tan y=n tan , then 1-n sin 2x 2 sin 4x 3 sin 6 x y= + +n 3 n +&c. Y sin a + n n 2 COS X . 2 1 { {}+ift +{} + } cos w}*. 2n {1+}{t+}{1+ +}{1+ £cosæ}*. 2n (Hind, Trig. 81.) (36.) Resolution of trigonometrical quantities into factors. 37 57 sin (2n-1) 1 sin .sin 2n 2n 2n T sin 2n & |