If the equation to the surface is Au? + By + Cxe + D=0, the equation to the tangent plane is Axx, + Byy, + Cxx, +D=0; and the equations to the normal are Aw, (x– x). My + Nx+ Px=0, the equation to the tangent plane is Myy + Nxxi + P(x+x)=0. If three planes perpendicular to each other are tangents to the surface Byi the locus of their intersection is the sphere x + y + x = a + b2 + co. If a conical surface circumscribes a surface of the second order, the line of contact is a plane curve. If any number of planes passing through a given point intersect a surface of the second order, and at the lines of intersection conical surfaces be circumscribed, the locus of their vertices is a plane. (H. A. G. 364, 85; G. G. A. Ch. xx; Biot, 335_8.) m DIFFERENTIAL CALCULUS. a dzU2 U2 (1.) Differentiation of algebraic functions. du, dzuju,=udzUQ + dzu,=U,U, + U1 dzu, dr U7 Ug... Un=UjU.... Un + &c. + U1 o + &c. + 010....Un 0.02...un U1 du, -&c. 01 VM dzUy dua + B dx dau, + dum Um dou expresses the same quantity which has usually been du denoted by (See L. C. D. Vol. II. p. 527.) dx d. (Sim 4m + const.) = S„,dąUm -P S {s. dzu, 1 (2.) Differentiation of exponential functions. log, d, log x= d, logax= dz€*=6". dza*=log, a.ak. de sin x = cos x. de cos x = dtan x=(sec x)? d, cot x= - (cosec x)? de sec x=tan x . sec X. d, cosec x = – cot x. cosec X. de vers x= sin x. de covers x= . sin . -COS X. a - a 1 -1 a devers de covers (2ax — xo) (2ax — ~?)}" Succi IVE DIFFERENTIATION. (3.) dzw" =nw" – 1. da" =n(n-1)– 21 2 &c. &c. doc" =n(n-1)...(n-m+1).on – m. d) * = (m - 1)...2.3.1. d. Uv=udzv + vdzu. da uv=uda v + 2d,u.dv + vd; u. di uv=ud; v + 3d,u.div + 3d, u.d.v+vdu. &c. &c. - 1 2 d sin , B (4.) d*a*=(log a)"a". d, sin = - sin 8, do sin x= &c. &c. &c. &c. din-1sin x=(-1)"- cos x, 0,2n – sin x=(-1)"-1 sin æ. d, tan x=1 + (tan x)", dtan x=2 tan x {1 + (tan x)?}, d; tan x=2{1+ (tan x)?}{1+3(tan x)}}. &c. &c. de sec x=sec x. (sec æ) – 11. di sec x = sec X. {2(secx) * — 1}. di secæ=sec x. {2.3(sec x) – 1}. (sec xo) — 17. &c. &c. These differential coefficients may be adapted to cosa, cot x, and cosec æ by substituting these quantities for sin X, tan a, and sec x respectively, and changing the signs of those coefficients the index of which is an odd number. (5) d, sin-la=(1- °)-%. d; sin - 1x = X(1 — «?)-*. d; sin - 4x=(1 — xo) - * + 3x2 (1 — «)'- . &c. &c. m m 2n - 2 2n-1.a-1; ß d,2m – 1:tan x (-1)"-" sin a a-1+Sin 2m 2n +1 | 2m - 2n d. 2m —:tan x (-1)^-^ sin x (-1)"-? :S -21 – 2.a-1+S 2m - 2n 2 m - 2n (-1)" sin x 2r-1 m -n-1 cosa m-1 n n 1 -1 d, tan–1x=(1 + ) -1. &c. = &c. The coefficients of cos - lx, cot-la, cosec-1x may be found from these as above. (L. D. C. 34-48.) (6.) d P(u)=d.P(u).du. (L. C. D. 11; L. D. C. 16.) DIFFERENTIATION OF FUNCTIONS OF SUPERIOR ORDERS. (7.) Let d20(w)=''(x), then d29"(x)=$'(x).$'$(x).'$*(x)... 'øn-(). $ = cos X.cos sin x .cos sinoX...cos sin” – 1X. n n - m a m w d":P(u)=Smd na p(u) {ar-1=d":4}. See Appendix. A few applications of this important theorem may here be added : dm:u" =ā".a”, {ap - i =d," – 1:0}. d":€" =€".Sm {Ap-1=d":0}. d :sinu ton m. a2m =S,(-1)m-1 cosu + Sm(-1)" sin u n – m.a" n m n'-2m n - 2m +1 2 m -1 2 m d":cos u n - 2m +1 alm 2m - 1 =Sm(-1)" sin u + Sm(-1)" cos u {am-1=dy:u; r= {n, if n is even, r=}(n— 1), if n is odd.} B d29"(x) = P.mp'$*-'(x). y desin” x=P mcos sin" – 18. vP-1 n |