+ 12p (p-1)(7p— 5) 'DI - &c. 2p% p-1 (p-1)(2p-1) ) брз 24p 120p (p-1)(11p-7) D:D:- DID? + D 12p* 3(p-1) D1+ 4pø. D + &c. - &c. these differences, which are given as far as the 5th order, are quite sufficient for the calculation of tables. ANON (17.) Du= dru.(Dx)" 1.2...n An On+1 + dn+u,(D2)*+1 + &c. 1.2... (n+1) In this series, the values of du, &c. and Dx must be determined in each particular case: for intervals of 1', Dx=0,000290888208665721596, &c. Anom will be the same in every case; these 1.2...m for all values of m and n, from 1 to 12 inclusive, are given in the annexed table: у Aron + m-1 y DuurSm (Dx)"+m-1.drum-lu. n+m-1 (18.) If the log. sinės be calculated for large intervals, as for every 10°, the differences for every degree may be thus found : (sin (x + DX) - sin Dzlog sin x=2 sin (+ Dx) + sin x - sinx sin (v + Dx) + sin x D, sin a De sin x = 2 + } (sin Dx) + &c.; (cos Dx) + cos (2x + Dx) this series converges very rapidly. (Enc. Met. Trig. 194—209; L. C. D. 893-6. +&c.}, :* { cos Day 7,cos (2x + Dau) )+&c.} 3 + +}( ) &c.} INVERSE METHOD OF DIFFERENCES. (19.) Integration of algebraical functions. ExAxUz=Uz + const. Exa.uz=aXxUz; if a is either independent of w, or such a function of x, that a=Qz+1 2:{u+ *ux + &c. + "u,} =,'Uz + $,u, + &c. + ], "UF. U7-1•U•Uz+1...Ur+n-1 (n+1) -1 (n-1)b.up.u,+1.1,+n-3 4,2" + A- 20"-1 + &c. + 4,0 + A The fraction U, U Ux+n+1 ; # + 1 in which the numerator is at least two dimensions lower than the denominator, may be decomposed into integrable fractions by assuming A + Ar-12-1+ &c. + A,« + A =B+B .uz + B.U,.Ur+1+&c. + B^.U.Uz+1...Ug+n-19 developing the latter quantity in powers of X, and equating coefficients. (20.) 8,1= x + const. 9x= x(x-1)+const. &c. m -1 = com m - 3 + m... 11 2- 13 1 E.com 12m + m +1 2.3 2 1 m(m-1)(m-2) 1 m(m-1)...(m-4) + 2.3.5 2 3 . 4 2.3.7 2 3 6 1 m(m-1)...(m–6) 5 m(m-1)...(m—8)gme 2.3.5 2 3 8 10 7 (m – 12) com + 2.3.5.7.13 2... 12 2.3 2... 14 3617 m (m— 1)... (m – 14) cm – 15 + &c. + const. a 2.3.5.17 2 3 16 (Tr. L. App. 368–79; L. C. D. 943–54; L. D. C. 51693.) (21.) The numerical coefficients of 2-1, 2-, &c. are the numbers of Bernoulli ; let them be represented by 62, 64, &c. respectively, then 0=}-} +62) + 3 . or m(m - 1)...(m - 4) m(m — 1)... (m–6) 68 + &c. 2 3 6 -8 t 6em is the coefficient of in the expansion of 1.2.3...2m -1 2 m 2m 62m=(-1)^-1 (22m – 12m – 1) 22m (22m — 1) 1 + (32m – 1 – &c.) - &c.}. B 1 = d. (TT. L. App. 408.) * 2m 2m - 1 {1 2m (22.) Integration of exponential functions. at Eram = + const. a sin (w++) @ Ercos 0= + const. 2 sin 10 cos (x + 1) sin = + const. 2 sine sin (a ++4.6) Ecos (a + b) 0 = + const. 2 sin 160 cos (a + x +4.60 E, sin (a + bx)= + const. 2 sin 460 |