Αναζήτηση Εικόνες Χάρτες Play YouTube Ειδήσεις Gmail Drive Περισσότερα »
Είσοδος
Βιβλία Βιβλία
" In the same way it may be proved that a : b : : sin. A : sin. B, and these two proportions may be written a : 6 : c : : sin. A : sin. B : sin. C. THEOREM III. t8. In any plane triangle, the sum of any two sides is to their difference as the tangent of... "
Euclid's Elements: Or, Second Lessons in Geometry,in the Order of Simson's ... - Σελίδα 117
των Dennis M'Curdy - 1846 - 138 σελίδες
Πλήρης προβολή - Σχετικά με αυτό το βιβλίο

The Register, Cornell University

Cornell University - 1875
...cos'^r — sin'.r=:2cosa;r — 1 = I — 2sinV. 4. Prove that in any plane triangle the sum of cither two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of hall' their difference. 5. Given two sides of a triangle equal...

Plane and Spherical Trigonometry and Mensuration

Aaron Schuyler - 1875 - 184 σελίδες
...£(Л + ß) : tan £(Л — B). Hence, In any plane triangle, the sum of the sides inchuling an angle is to their difference as the tangent of half the sum of the other two angles is to the tangent of half their difference. We find from the proportion, the equation...

Key to Robinson's New Geometry and Trigonometry, and Conic Sections and ...

Horatio Nelson Robinson - 1875
...apply the following theorem in trigonometry. As the sum of two sides is to their difference, so is the tangent of half the sum of the angles at the base, to the tangent of half their difference. Let x= the half difference between D and C. Then, Or, 3268...

Elements of Plane and Spherical Trigonometry: With Practical Applications

Benjamin Greenleaf - 1876 - 170 σελίδες
...The proposition, therefore, applies in every case. BOOK Ш. 2. In any plane triangle, the sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. For, by (90), a : 6 : : sin A : sin B;...

Plane and Spherical Trigonometry

Henry Nathan Wheeler - 1876 - 208 σελίδες
...sides of any triangle are proportional to the sines of { 72. The surn of any two sides of a triangle is to their difference as the tangent of half the sum of the opposite angles Is to the tangent of half their difference . . 78 § 73. The square of any side of...

The Elements of Plane Trigonometry

Henry Nathan Wheeler - 1876 - 109 σελίδες
...that sin B is equal to the sine of its supplement CBP. § 72. The sum of any two sides of a triangle is to their difference as the tangent of half the sum of tlie opposite angles is to the tangent of half their difference. From [67] we get, by the theory of...

Elements of Geometry, Conic Sections, and Plane Trigonometry

Elias Loomis - 1877 - 443 σελίδες
...(Art. 53), it follows, from the preceding theorem, that the sura of any two sides of a plane triangle is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. This is the same as Theorem II., Art. 54,...

Elements of Trigonometry: Plane and Spherical

Edward Olney - 1877 - 201 σελίδες
...horizontal parallax. PLANE TR1GONOMETRY. 86. Prop.— The sum of any two sides of aplane triangle 's to their difference, as the tangent of half the sum of the angles oppos'te is to the tangent of half their difference. DEM. — Letting a and b represent any two sides...

Annual Report, Τόμος 47

Cincinnati (Ohio). Board of Education - 1877
...from a given point, find the distance of each from the given point. 2. In a plane triangle, prove that the sum of two sides is to their difference, as the tangent of J the sum of the angles opposite them is to the tangent of J their difference. 3. Prove: tan. a=- sln...

Annual Report

1878
...rest ? TRIGONOMETRY. Scientific Clatt. 1. Demonstrate, that in any plane triangle, the sure of any two sides is to their difference, as the tangent of half the sum of the opposite angles is to the tangent of half their difference. 2. Give the limiting values of the circular...




  1. Η βιβλιοθήκη μου
  2. Βοήθεια
  3. Σύνθετη Αναζήτηση Βιβλίων
  4. Λήψη ePub
  5. Λήψη PDF